INVARIANT DIFFERENTIAL DERIVATIONS
FOR REFLECTION GROUPS
IN POSITIVE CHARACTERISTIC
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ABSTRACT. Much of the captivating numerology surrounding finite reflection groups stems
from Solomon’s celebrated 1963 theorem describing invariant differential forms. Invariant
differential derivations also exhibit fascinating numerology over the complex numbers linked
to rational Catalan combinatorics. We explore the analogous theory over arbitrary fields,
in particular, when the characteristic of the underlying field divides the order of the acting
reflection group and the conclusion of Solomon’s Theorem may fail. Using results of Broer
and Chuai, we give a Saito criterion (Jacobian criterion) for finding a basis of differential
derivations invariant under a finite group that distinguishes certain cases over fields of char-
acteristic 2. We show that the reflecting hyperplanes lie in a single orbit and demonstrate
a duality of exponents and coexponents when the transvection root spaces of a reflection
group are maximal. A set of basic derivations are used to construct a basis of invariant
differential derivations with a twisted wedging in this case. We obtain explicit bases for the
special linear groups SL(n, ¢) and general linear groups GL(n, q), and all groups in between.

1. INTRODUCTION

Solomon [22] showed that the set of differential forms invariant under the action of a
complex reflection group forms a free exterior algebra. The situation is more subtle over
an arbitrary field, especially when the characteristic of the underlying field F divides the
order of the acting group, the so-called modular setting. Zalesskii and Serezkin [27] classified
the irreducible reflection groups over fields of positive characteristic, but not every reflection
group is the sum of irreducible reflection groups, and many interesting examples are reducible
with nondiagonalizable reflections. Hartmann [11] showed that the conclusion of Solomon’s
Theorem holds for a group generated by diagonalizable reflections whose ring of invariant
polynomials forms a polynomial algebra. Hartmann and the second author [13] extended
this work to exhibit the space of invariant differential forms as a free exterior algebra via a
twisted wedge product when the transvection root spaces are maximal. Such groups include
SL,(F,) and GL,,(F,) for a finite field Fy, and we explore these groups as analogs of Coxeter
and well-generated complex reflection groups. We assume all reflection groups are finite.

Recently, attention has turned to differential derivations as their invariants under a reflec-
tion group arise in Catalan combinatorics with connections to rational Cherednik algebras,
symplectic reflection algebras, and Lie theory (e.g., see [9, 2, 3, 18, 1, 16, 8, 17]). The dif-
ferential derivations invariant under the action of a well-generated complex reflection group
constitute a free module over a certain subalgebra of the invariant differential forms, and
associated Hilbert series give Kirkman numbers (see [16, 17]).
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We investigate the case over an arbitrary field F here. We examine the set (S@AV*®@V)Y of
differential derivations invariant under a finite group G acting linearly on a finite-dimensional
vector space V = ", with symmetric algebra S = S(V*), a polynomial ring. We include
the modular setting when char(F) divides |G|. Broer and Chuai [6] used ramifications over
prime ideals to give a general Jacobian criterion. This criterion requires a full description of
the invariant theory for groups fixing a single hyperplane. Finding this description may be
trivial when all group elements are diagonalizable but often is a sticking point when working
over arbitrary fields. Here, we require a rigorous analysis of the actions of transvections on
differential derivations (see Appendix A). We develop a Saito criterion in terms of pointwise
stabilizers for determining whether a set of homogeneous elements is a basis:

Theorem 1.1. Consider a finite group G C GL(V') acting on V- =TF". For a set B ofn(Z)
homogeneous elements in (S @ AN*V* @ V), the following are equivalent:

a) (S ®ANFV* @ V) is a free SY-module with basis B.

n—1 1 n—1
b) The coefficient matrixz of B has determinant Q( k )Qg(; )(k_l)Qk up to a nonzero scalar.

c¢) B is independent over F(S) and Z degn = Z (";1) +(eg—1)(n— 1)(2:1) +emamy -
neB HeA

Here, F(S) is the field of fractions of S, ey records the maximal order of a diagonalizable
reflection in G about each H in the collection A of reflecting hyperplanes of G, the polynomial
Q. in S (see Eq. (3.4)) depends on the transvection root space of each H, and the nonnegative
integers ap  (see Eq. (3.5)) depend additionally on the characteristic of F in a subtle way.

We argue that reflection groups with transvection roots spaces all maximal, such as groups
G with SL,(F,) € G C GL,(F,) (see Section 9), serve as analogues of the duality (well-
generated) complex reflection groups with Coxeter number given as the number of reflecting
hyperplanes times the maximal order of a diagonalizable reflection in the group (see Re-
mark 4.7 and Remark 5.7). The following result provides the structure of the invariant
differential derivations for this class of reflection groups.

Theorem 1.2. Let G C GL(V') be a reflection group with transvection root spaces all mazximal
and charF # 2. Suppose (S @ V) is a free SE-module with basic derivations 0y,...,0, and
dual 1-forms w1, ... ,w,. Then (S ® AV* @ V)Y is a free SC-module with basis

{d0p} U{wr01,...,wiby: I C[n]}\{wb,} foranyr=1,... n

We use the exterior derivative of the Euler derivation, dfg = Z?:l 1® z; ® v;, dual 1-forms
w1, ... ,wy constructed via an operator related to the Hodge dual (see Proposition 5.3), and
twisted wedge products w; (see Eq. (4.4)).

Example 1.3. For the reflection group G = ((} 1)) acting on V = F? with charF = p > 2,
basic derivations 01 =1® vy, 0y =1x1 Qv+ T2 ® V9 generate (S ® V)G and
dual 1-forms W =2Ta®r — T ®re, wy=—1Rxy generate (S® V*)G

as free S%-modules. Then (S ® AV* ® V)9 is a free S¢-module with basis

01=101Qv, =211 +22R1Rvs, dIg =10z Qv +1R 22 ® Ve,
wify = T2 @11 QU — 1 ® T2 ®V1, woth = —1® 22 ®v1,
w1l = x172 ® T1 @ V1 +x%®x1 & v —x%®x2®v1 — T1T2 @ T2 @ va,

(W1Aw2)91:—1®$1/\$2®’01, (w1 )\W2)92:—$1®.%'1/\J}2®’U1—x2®1‘1/\$2®’02.
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Outline. In Section 2, we recall various properties of reflection groups and hyperplane ar-
rangements and relate derivations and differential forms to differential derivations. We give
Saito criteria for invariant derivations and 1-forms in Section 3. We then derive a Saito crite-
rion for invariant differential derivations for all finite groups using an extensive analysis of the
actions of transvections in Appendix A. In Sections 4-9, we focus on reflection groups whose
transvection root spaces are maximal. We show the hyperplanes all lie in the same orbit,
recall a twisted wedge product, and identify the semi-invariant differential forms in Section 4.
In Section 5, we show how to construct a set of basic 1-forms when a set of basic derivations
is known, and vice versa, demonstrating a duality of exponents and coexponents of the group.
The structure of the set of invariant differential derivations when the characteristic of the
base field is not 2 is given in Section 6 whereas Section 7 analyzes the characteristic 2 case.
Section 8 considers groups acting on vector spaces over prime fields and Section 9 considers
SLy(Fy), GL,(F,), and all groups in between.

2. BACKGROUND AND NOTATION

We fix a finite-dimensional vector space V = F™ over a field F of arbitrary characteristic,
n > 1. Let S := S(V*) be the symmetric algebra of V* which we identify with the polynomial
ring F[V] = F[z1,...,x,] for a basis z1,...,x, of V*. We use F(5) for the fraction field of
S. Let G € GL(V) be a finite group acting on V' and consider the usual dual action on V*
(given by the inverse transpose of the matrix recording the action on V') which extends to an
action on S by automorphisms. We write a = b to indicate a and b are equal up to a scalar
in F*. Note that all tensor products are taken over F.

Invariants. For any FG-module M, we write M© for the invariants in M and
Mf ={me M :g(m)=x(g)m for all g € G} for the x-invariants,

the space of semi-invariants with respect to a linear character x : G — F* of G. We write
det = dety : G — F* for the determinant character of G acting on V.

The space S ® M is an S-module through multiplication in the first tensor component.
Likewise, the space of invariants (S ® M)% is an S%-module, necessarily of rank dimp(M)
(e.g., see [4] or [6]), and we seek S@-module bases when these invariant spaces are free.

Reflections. Recall that a reflection on a vector space V' = F" is a nonidentity invertible lin-
ear transformation that fixes pointwise a subspace of V' of codimension 1, called the reflecting
hyperplane of the transformation. A reflection group is a group generated by reflections, and
we assume all reflection groups are finite. There are two types of reflections: diagonalizable
reflections and transvections (nondiagonalizable). Note that order(s) and charF are coprime
and det(s) lies in F* when s is a diagonalizable reflection, whereas order(s) = charF and
det(s) = 1 when s is a transvection (see [21]).

Reflection arrangement of a finite group. We say a hyperplane H in V is a reflecting
hyperplane of G when there is some reflection in G about H. We denote the (possibly empty)
collection of all reflecting hyperplanes of G by A = A(G) and note that A(G) = A(W) for
W the subgroup of GG generated by the reflections in G.
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Pointwise stabilizers of reflecting hyperplanes. We denote the pointwise stabilizer of
each reflecting hyperplane H of G by Gy = {g € G : g|lg = 1}. The transvections in Gy
along with the identity form a normal subgroup Ky of G:

KH:ker(det:GH%FX).

We set ey = |Gy : Kp| and observe that Gy = (Kp,sy) = Ky x Z/egZ , where sy is a
diagonalizable reflection in GG about H of maximal order ey when efr # 1 and s = 1¢ when
eyg = 1.

Root vectors. For each reflecting hyperplane H of G, we fix a linear form £z in V* with
ker/;; = H. Each reflection s in G about H is then defined by its root vector vs spanning
Im(s — 1) C V with respect to g, see [21]:

s(v) =v+Ly(v)vs forall vin V.

Note that a reflection s about H is a transvection exactly when its root vector vy lies in H.

Root spaces. The root space Ry of a reflecting hyperplane H of G is the F-vector space
spanned by all of the root vectors of the reflections in G about H. The transvection root
space of H (see [13]) is the space Ry N H spanned by the root vectors of the transvections in
G about H. We denote its dimension by b:

bpr = dimp(Ryg N H) = dimy F-span{v; : s is a transvection in G about H} .

If the transvection root space of H is all of H, i.e., Ry N H = H, then by =n — 1 and we
say the transvection root space is mazimal. Often all of the transvection root spaces for G
are maximal, as is the case, for example, when SL, (F,;) C G C GL,(FF,).

Arrangement polynomials. We consider the arrangement-defining polynomial @) in S and
polynomials Qget and Q(A) (see [13]) which vanish on some reflecting hyperplanes or are 1:

Q=[] tu. Quu:=J] 5", and QUA):= [T ¢z
HeA HeA HeA

These polynomials depend only upon G up to a scalar in F*. Recall that Qge¢ divides any
polynomial that is semi-invariant with respect to the linear character det = dety : W — F*
of the subgroup W generated by the reflections in G. In fact (see Eq. (4.8), [23], [14], [20]),

for Qdet71 = HHGA:&H;él Cu,
(2.1) Shee = Qaet S and SV 1 = Q-1 SV .

et™?!

Vector space basis for one hyperplane. For any reflecting hyperplane H of GG, we may
choose a convenient basis vy, ..., v, of V with dual basis x1,...,x, of V* so that vy,...,v,—1
span H and /g = x,. In fact, we may choose v1,..., v, to be root vectors of transvections
t1,...,tp, in G about H and v, ¢ H to be an eigenvector of sy with eigenvalue A € F* of
order er;. With respect to this basis,

1
. L
(22) tm = .1‘ 1 — m™ row fOI‘]_SmeH and Sg = ( . . ) .
- \
Note that ey = 1, sgp = 1@, and A = 1 when G contains no diagonalizable reflections about

H. When F = F,, Gy is precisely (t1,...,tp,,su), 0 |Gu| = ey p’7. In general, however,
Gy may contain more transvections about H (see Lemma 2.1 in [12]).
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Example 2.3. Let V =T g with standard basis v1,v2 and dual basis x1,xo of V*. Consider
the group G = (t, s, g) generated by

t=(1), s=(o-1), and g=(7%,)-

The subgroup of G generated by its reflections is W = (¢, s), which fixes a single hyperplane

H = ker z5. The transvection root space of H has dimension by = 1 (i.e., Ry N H = H) and

the maximal order of a diagonalizable reflection is ey = 2. S0 Q = Qqet = #2 and Q(A) = z2.

Derivations and differential forms. We identify the set of S-derivations Derg on V' with
S ® V, identify the set of differential forms on V with S ® AV*, and consider the S-module
S@AV*®V of differential derivations on V (otherwise called mized forms, see [16]):

SV (derivations),
S®@AV* (differential forms),
S@AV*®@V  (differential derivations).

Consider a basis vy, ..., v, of V with dual basis z1,...,z, of V* and aset wy,...,w, € SQV*.
For any subset I = {iy,...,ix} of [n] = {1,...,n} with i; < ... <, we set

vr = N A, E/\kV,
(2.4) xpi=xy A Ay, € AFVE
wri=wiy, A Awg, € S @AV
with vy = 1, zy = 1, and w;y = 1 ® 1 for the empty set I = @. To indicate subsets of

size k, we write I € ([Z}) for I C [n] with [I| = k. We denote the volume form on V' by
voly = vy A -+ Avy € A"V and the volume form on V* by voly« =x1 A--- Az, € A"VE,

Differential derivations as a module over the differential forms. We view the set of
differential derivations S AV*®V as a module over the set of differential forms S AV* via
multiplication in the first two tensor components: for f, f' in S, zr, 2 in AV*, and v € V,

(2.5) (for)(f®@r;ev)=ff @ Ar; @0

Embedding derivations into the differential derivations. We embed the set of deriva-
tions into the set of differential derivations:

SRV = SAV RV, fRuv— feleu.

This embedding together with the module structure of Eq. (2.5) allows us to multiply a
differential form and a derivation to construct a differential derivation, with the G-action

preserved: (SRAV) X (S@V) — S@AV RV,

(fez) x(ffov)— ffforrev.
Degree and rank. We assign degz; = 1 for all ¢ so that S = €, S; is graded by the usual
polynomial degree and G acts by graded automorphisms. For any FG-module M, we say the
elements of S; ® M are homogeneous of polynomial degree i. We say elements in S ® AFV*

and in S ® A*V* ® V have rank k. Thus 1-forms are differential forms of rank 1, and for
homogeneous f in S, I C [n], and v € V,

deg(f @ 7 ®v) =deg(f) and rank(f ® x; ® v) =rank(z;) =|I|.
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For an FG-module M, one may choose a homogeneous basis of the S%-module (S® M) when
free by the graded Nakayama Lemma (e.g., see [15, Proposition A.20], [21, Corollary 5.2.5],
or [7, Section 2.10]) and polynomial degrees of basis elements are independent of choice.

Euler derivation. Recall that the Fuler derivation 0 := Z?Zl z; ® v; is invariant under
any linear group action. We use the invariant differential derivation dfg (see [16]):

=102 QU+ +1Qz,@v, € (SQV*@ V)Y,

Coefficient matrix. For any FG-module M, we define the coefficient matrix of wq,...,wy
in S ® M with respect to an ordered basis z1,..., z, of M as usual by

m
Coef(wi, ... ,we) = {fij} 1<i<e € Mixm(5), where w; = Z fij®@zjfor1 <i</.
1<j<m j=1
For any unordered set B C S® M with |B| = m, the determinant det Coef(B) is defined up to
a sign and is nonzero precisely when B is independent over F(S). Notice that the coefficient
vector of a differential derivation arising as the product of a differential form and a derivation
is just the tensor product of the respective coefficient vectors: for any w = >, fr ® zr in

S @ NFV* and 0 =30, fi®v;inS@V,

wh = ijfj{@x[@vj with Coef(wf) = Coef(w) @ Coef(d) = (frys---, f1,) @ (f1,-- -5 1)

Ij
with respect to a fixed ordered basis x; ®v; of NEV* @V arising from ordered bases vy, . .., vy,
of V and zp,,..., x5, of AFV* with m = (Z) This extends to subsets of differential forms

B C S®AV* and derivations B’ € S ® V: with the appropriate orderings,
Coef(wl : w € B,0 € B') = Coef(B) @ Coef(B').

This fact immediately implies the following observation since {wy : I C [n]} is independent
over F(S) whenever {wi,...,wp} C S ® V* is independent.

Lemma 2.6. If {01,...,0,} C S®QV and {w1,...,w,} C S®@V™ are both F(S)-independent,
then so is
{wrb;:Te(M,1<j<n} cSarkV eV,

3. SAITO/JACOBIAN CRITERION

We consider a finite group G C GL(V) acting on V' = F". We give criteria for finding
S bases of invariant derivations (S® V)¢ and invariant 1-forms (S® V*)¢ before examining
invariant differential derivations (S ® AV* @ V)&,

Solomon’s Theorem. Solomon [22] showed that when G is a reflection group acting on
V = C", the set of invariant differential forms (S ® AV*)% is a free exterior algebra over S¢
generated by dfy, ..., df, for any polynomials fi,..., f, with S& = C[f1,..., fal:

(S®/\V*)G:/\Sc{w1,...,wn} with w; =df; for 1 <i<n.

For a reflection group G acting on V' = F" with charF dividing |G|, the ring of invariant
polynomials S¢ may not be a polynomial algebra. Even when S¢ = F[fy,..., f,] for some
fi in SY (i.e., the action is coregular, see [5]), the exterior derivatives df; do not generate
(S ® AV*)E as an exterior algebra when G contains transvections: Hartmann [11] showed
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that the conclusion of Solomon’s Theorem holds if and only if S¢ is a polynomial algebra
and G contains no transvections.

Saito criteria for invariant derivations and 1-forms. Criteria for finding bases of in-
variant derivations and invariant 1-forms under the action of a finite linear group G relies
on the pointwise stabilizer subgroups Gy of each of the reflecting hyperplanes H € A of G.
Thus we begin with groups fixing a single hyperplane; a more general criteria will follow from
[6, Theorem 3].

We use the 1-forms from [13, Remark 13] and provide a short direct proof for derivations.
For each reflecting hyperplane H of G, recall that ey is the maximal order of a diagonalizable
reflection in G about H (or ey = 1 if none exist) and by is the dimension of the transvection
root space of H. We consider the exterior product of derivations 61 A --- A6, in § @ A"V
and of 1-forms wy A - Aw, in S ® A"V*,

Lemma 3.1. Suppose a nontrivial finite group G C GL(V) fizes pointwise a hyperplane
H =kerly in V. =TF". Then (S ® V)% and (S @ V*)¢ are free S¢-modules, and for any
01,...,0, in (S®V)E and any wr, ... ,w, in (S®@V*C,

e 0y,...,0, arean S -basis of (S® V)G if and only if 01 A--- N0, = Ly voly, and

o Wi, ... ,wy are an SC-basis of (S@V*)C if and only if w1 A -+ Awp = K?fbHJreH*l voly .
Proof. We exhibit an explicit S%-basis 61, ...,0, of (S®V)Y with 8; A--- A6, = £ voly and
an explicit S%-basis wy, ..., wp of (SRV*) with wiA---Aw, = E?fbHJ“eH_lvolV*. The result
then follows from [6, Theorem 3] (see also [6, Proposition 6]). We use the basis vy, ..., v, of
V with dual basis x1, ..., 2, of V* of Eq. (2.2), so £y = x,, and consider the invariants

1®wv; for 1 <i < n, a:fLH(X)xi—:Uix%H’l@xn forlgi'SbH,
0; = s - for i and w; =< 1® z; for by < i < n,
' x;®u; fori=n, _ .
j=1%J J TCH 1®$n fori=n.

Then wy A - -+ Awy, = 268PH+er=1yol. and the w; are an S%-basis of (S ® V*) by [13].
Fix some § = >, h; @ v; in (S ® V)Y, For g # 1g in G with root vector (o, ...,a,), so
g(vy) = Z#n a;v; + (1 + ay)vy, with o, # —1, we equate polynomial coefficients of 6 with

those of g(#) and conclude that
hi — 7= h, fori#n, T — r—x, fori#n,
g(h;) = { tan while  g(z;) = { L Hran

Tras In fori=mn.

1 A
mhn forl—n,

Note that «; # 0 for some j (as g # 1), so hy, = g(h;)—h; is divisible by z,, (see Lemma A.1).
Also, g fixes hTz and h; — Z—:xl for i # n. As g was arbitrary, these polynomials lie in S¢, and

0="20, +3 (h — Leay)0;

lies in the S®-span of the 6;. As 61 A--- A6, = z,voly # 0, the §; are independent over
F(S), and thus over S¢, and are an S%-basis of (S ® V)¢. O

Lemma 3.1 together with [6, Theorem 3] implies the following analog of the classical Saito
Criterion (see [15, Corollary 6.61, Proposition 6.47]) for all finite linear groups, including
those with transvections.
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Theorem 3.2. Consider a finite group G C GL(V') acting on V =TF",
For homogeneous 01, . .., 0, in (S ® V)Y, the following are equivalent:

a) (S® V)Y is a free S%-module with basis 61, ... ,0,.

b) 01N - NO, =Q voly.

¢) b1,...,0, are independent over F(S) and Y ;| deg;, = deg Q = |Al.
For homogeneous wi, . . .,wp in (S ® V*)C, the following are equivalent:

a) (S®@V*Y is a free SE-module with basis wy, ... ,w,.

b) wi A Awp = Q(A)Qqet voly.
¢) wi,...,wp are independent over F(S) and Y degw; =Y yeq (eHbH + ey — 1).

We call 61, ...,0, satisfying the equivalent conditions of the last theorem basic derivations
and call wy,...,w, satisfying the equivalent conditions of the last theorem basic 1-forms.

Saito criterion for invariant differential derivations. Now we turn our attention to
establishing a Saito criterion for (S ® A*V* @ V)Y, This requires a detailed analysis of the
action of transvections relegated to Appendix A. Such care is not required over fields of
characteristic zero as all reflections are diagonalizable. Within the analysis, we distinguish
those hyperplanes of G whose pointwise stabilizers Gy consist of exactly one transvection
and the identity. Define df to be 1 in this case and 0 otherwise:

(3.3) e { 1 if Gg = {1¢, one transvection},
. o=

0 otherwise.
Note that when char[F # 2, any transvection and its inverse are distinct, so

o =0 for all H € A whenever charF # 2.

Additionally, for each 0 < k < n corresponding to the rank of a differential derivation, we
define a polynomial which depends only upon G up to a scalar in F*,

(3.4) Qw:= ] """,
HeA

in terms of integers ap > 0 depending on the pointwise stabilizer Gy of each H in A:
(3.5) an = (=8 (51 = () + (D) = ().
Here, (}) =0ifa <borb<0.

Remark 3.6. In the nonmodular setting, the group G contains no transvections and bz = 0
for every reflecting hyperplane (minimal transvection root spaces), so each a = 0 and

Qr =1 when charF and |G| are coprime.

On the other end of the spectrum, we will see in Section 4 that if by = n—1 for every reflecting
hyperplane of G (maximal transvection root spaces), then the reflecting hyperplanes are in
a single G-orbit and there are fixed nonnegative integers e, b, §, and ag with e = e, b = by,
0 =0, and ay, = apy for every reflecting hyperplane H, and

0 when k=0,

Qr = (QQqet)™  with ap =4 (n—0)(n—1) when k =1,
(n—19) (”;1) + (Z:%) when k > 2.
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Now we establish a polynomial that divides the determinant of the coefficient matrix of
any potential basis of invariant differential derivations of fixed rank. Compare with [16,
Lemma 6.1] in the nonmodular case, where @ = 1 for all £ > 0. The analysis required here
(relegated to the appendix) is more nuanced because of the existence of transvections.

Lemma 3.7. Consider a finite group G C GL(V). For any set B of n(Z) elements in
(S @ AFV* @ V)C, the determinant of Coef(B) is divisible by the polynomial

o NS D1 (s
Qg6 g,
Proof. Fix a reflecting hyperplane H = kerfy of G. By Lemma A.8 in Appendix A,
det Coef(B) is divisible by ¢y to the power (";1) + (eg — 1)(n — 1)(?:%) + enam . As
the linear forms £y are pairwise coprime for H € A, the claim follows.
O

We establish a Saito criterion for invariant differential derivations in Theorem 3.9, and the
proof depends on an analysis for pointwise stabilizers G g of reflecting hyperplanes H € A.
As for the derivations and differential forms, we first require a criterion for the case of a group
fixing one hyperplane. Recall that we write I € ([Z]) when I C [n] ={1,...,n} with |I| = k.

Proposition 3.8. Suppose a nontrivial finite group G C GL(V') fizes pointwise a hyperplane
H =kerlg in V =TF". Then (S® A*V* @ V)% is a free S“-module for all k, and elements
N --.,Mm are a basis if and only if m = n(Z) and

n—1 _ e n—1 ora
det Coef(ny, ..., nm) = gl(qk )+ (en—D)(=1) () +emarmi

Proof. We abbreviate ¢ = {, e = ef, b = by, 6 = dp, ap = apj, and use the basis vi,...,v,
of V' with dual basis z1,...,x, of V* of Eq. (2.2) so that { = z,, and z{, is G-invariant. We
also use the basic derivations 6; and basic 1-forms w; from the proof of Lemma 3.1. For a
fixed k, consider the subset of invariant differential derivations

By ={010;:Te (M), 1<j<nwithn¢lorj#n}U{ddos:Te (") withnel},

where Wy = wI/fom(I) for m(I) = max {0, [IN{1,...,b,n}| — 1}. By Lemma 2.6, the set
{@r0;: 1€ ([Z]), 1 <j < n} is independent over F(S). We argue that, for each I with n ¢ I,
we may replace Wry(n)bp in this set by Wy dfp while maintaining & (S)-independence to show
that the resulting set By, is also F(S)-independent. Note that

b n—1
xt dfp = Zwiﬁi + Z (xywiby — Tiwnb;) + wpbhy,,
i=1 i=b+1

and thus, for I C {1,...,n— 1},

b n—1
N 1 - 1 - - 1 .
wjdeE:E E (wf/\wi)ei—i—% E (:Uzwj/\wi—xiwj/\wn)é?i—i—g(wl/\wn)%.
=1 i=b+1

Thus each &y dfg lies in the F(S)-span of {@w;6; : I € ([Z]), 1 < j < n} with the coefficient
of Wyy{n}n nonzero when n ¢ I. As the various sets I U {n} with n ¢ I are distinct, By, is
F(S)-independent.



10 D. HANSON AND A. V. SHEPLER

First suppose 6 = 0 and set Ay = ("gl) + (e — 1)(n — 1)(2:%) + ear. The module
(S @ AFV* @ V)9 is free over S¢ by [6, Proposition 6], say with basis Cj. Each element of
B lies in the S¢-span of € with polynomial coefficients recorded by some matrix M, and

det Coef(Ck) - det(M) = det Coef(By) # 0.

By Lemma 3.7, ¢+ divides det Coef(€;) in S (as § = 0), while a calculation confirms that
deg(det Coef(By)) = Ag. Hence det Coef(Cy) = ¢2* and [6, Theorem 3] implies the result.
Now suppose § = 1 and set A} = (";2) + n(z:f) + (Z:g) Here, G = {1¢g,t1}, charF = 2,
and e = b= 1. Consider an alternate subset of invariant differential derivations
2.:{(:)]9]‘:.[6 ([Z]), 1§j§nwith]ﬂ{1,n}:®0rj7én}

U{@rdog : T e (") withn ¢ 1} U{@rn: 1 e (™) with In{1,n} = &},
where 170 = 21 ® 1 @ V1 + T, @ X1 Uy + X1 R Ty QU1 + T1 ® Ty, ® Uy, Which is G-invariant.
We argue that, for each I with I N {1,n} = @, we may replace Gy 110, in By, by @y no while
maintaining F(S)-independence to show that B}, is also F(S)-independent. As charF = 2,

n—1
T Mo = Z ziw1 i + (23 4 z120)wnb1 + w16y,
i=2
and hence, for I C {2,...,n— 1},

@rmny = nil (&I /\wl)ﬁi + (22 —i—:vla:n)(a)[;\wn)@l + (QI /\w1>0n‘

Tn n n

i=2
Thus each @y with I N {1,n} = & lies in the F(S)-span of a subset of By with nonzero
coefficient of &y (110n. As these subsets are disjoint for the various I with I N {l,n} = &,
the set B}, is F(S)-independent and det Coef(B}) # 0. A computation shows that A} is
simultaneously the degree of det Coef(B)) and the degree of the polynomial in Lemma 3.7
(as 6 = 1). The claim then follows as in the previous case using [6, Theorem 3]. O

Proposition 3.8 with [6, Theorem 3] then implies Theorem 1.1 of the introduction:

Theorem 3.9. Consider a finite group G C GL(V') acting on V- =F". For a set B of n(Z)
homogeneous elements in (S @ A\FV* ® V)G, the following are equivalent:
a) (S® ANV @ V)Y is a free SY-module with basis B.

n—1

b) det Coef(B) = Q(n?) Qézt_l)(k—l)Qk.

c¢) B is independent over F(S) and Z degn = Z (ngl) —i—(eH—l)(n—l)(Zj) +eman -
neB HeA

Example 3.10. Let G C GL(V) be a nontrivial finite group with dimV' = 1. Then G is
cyclic say with generator s of order e > 1. Notice that s is a reflection fixing the hyperplane
H = {0y}, so G is a reflection group. All elements in G are diagonalizable, so G does not
contain any transvections, and the transvection root space of H has dimension 0 = n — 1 (so
is maximal). Let v be a basis of V with dual basis 2 of V*. Then w = 2¢~! ®z is an S%-basis
of (S®V*)% and = z ® v is an S%basis of (S ® V) (see Theorem 3.2). Finally, # and
dfp are an S@-basis of (S@AV*® V)¢ by Theorem 3.9. Note that w and 6 are dual in some
sense, see Remark 5.5.
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Remark 3.11. Note that one direction of Theorem 3.9 follows directly from a version of
Solomon’s 1963 original argument [22]. Indeed, (b) and (c) are equivalent by Lemma 3.7,
and any F(S)-independent ordered subset B = {n1,...,nn} with m = n(}) spans F(S) ® M
over F(S) for M = AFV* ® V. Hence, after relabeling the basis elements x; ® v; of M as
21,..., Zm, we may write a fixed n € (S ® M)% as

n= ij®zj and as n:Zhim for some h; € F(S5).
J i

Here, 1; = 3_; Coef(B);; ® 2; (with each Coef(B);; in S) and h - Coef(B) = f for row vectors

h = (h1,...,hm) and f = (f1,..., fin). Cramer’s Rule implies that h; = %j@;g@, where

Coef(B)(;) is obtained by replacing the i-th row of Coef(B) by f. Since m A -+ A npy =
det Coef(B) ® z1 A - -+ A 2y, the polynomial det Coef(B) is semi-invariant with respect to the
linear character det]T/[1 of G for dety; the character afforded by A™M, as is det Coef(B);
likewise, and hence h; € F(S)¢. By Lemma 3.7, det Coef(B) divides det Coef(B)(;), so h; lies
in SN JF(S)¢ = S (see, e.g., [7, Section 1.7] or [21, Section 1.2]).

Remark 3.12. Of particular interest is the set (S ® V* ® V)¢ of invariant differential

derivations of rank 1 (see [1, 16, 17]). By Theorem 3.9, n? homogeneous J(S)-independent
elements in (S ® V* ® V) are an SC-basis if and only if their polynomial degrees add to

Al = Z eH(an—bH5H—}—n— 1).
HeA

Example 3.13. Consider the group

G = <(é%8),(%%),<6??),(5& 0 )> C GL3(Fs) .
001 001 001 00 —1
The subgroup W generated by the reflections of G is the group of unipotent upper triangular
matrices in GL3(F3) and A = A(G) = A(W) is defined by Q = 2373 — m223. Three hyper-
planes H in A each have transvection root space of dimension by = 1, whereas by = 2 for one
hyperplane (kerzs). Note that ey = 1 and dy = 0 for all H in A. The ring of W-invariant
polynomials is SV = F[f1, fo, f3] for

3 2 9 3,.6 3,.4,.2 3,.2,..4 3,.6 6,.2 4,4 2,6
fi=z3, fo=ay—2223, f3=2]—2]T3—2|ToT3—T|T323—T]T3+T1T9T3+T1T9XT3+T1T523 .

Additionally, (S ® V)" and (S ® V*)W are free S"-modules with respective bases 61, 02, 03
and wi,ws,ws by Theorem 3.2 for
Or=10v, bh=210v +T2R@v2+130v3, 0=V + 75+ 75 @ v3,
wi=1®x3, wy=2x3QT2— T2 T3,
w3 = (7323 — T2x3) @ 71 + (—2i7s + 2173) ® T2 + (TiT2 — T173) ® T3
By Theorem 3.9, (S ® V* @ V)W is a free SW-module with basis
{dop} U {wif; 11 <i,j <3} \{wsbi}.

Here, (2313 — 2023) dip = w301 + walz — x3wabs + (23 — w223)w162, so we may indeed replace
wsby (or alternatively wof3) by dfg in the set from Lemma 2.6 (with & = 1) to obtain a basis.

Notice that although S¢ is not a polynomial ring (as G is not a reflection group, see
[19]), the derivations ;1,602,605 lie in (S ® V)Y so are a basis of the S¢-module (S ® V)¢ by
Theorem 3.2. However, (S ® V*)¢ can not be free over S¢ since otherwise a basis would also
serve as an S"-basis of (S ® V*)W by Theorem 3.2 (see [6, Corollary 6]) and thus would
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contain an element of polynomial degree 0, which is not possible as (Sy ® V*)¢ is empty.
Note that w; € (S® V*)“ only for i = 2,3. Similarly, (S® V*® V)% is not a free S“-module
by Theorem 3.9 as dimp(Sy ® V* @ V)% is 1, not 2 (as for W).

4. GROUPS WITH TRANSVECTION ROOT SPACES MAXIMAL

We now consider groups whose transvection root spaces are maximal, i.e., groups for which
each transvection root space coincides with its reflecting hyperplane (so by = n —1 for all H
in the reflection arrangement A). Such groups include the special and general linear groups
SLy(F,) and GL,,(F,) (see Section 9). We show that all reflecting hyperplanes are in one orbit
and recall a twisted wedging that exhibits the invariant differential forms as a free exterior
algebra. We also consider semi-invariant differential forms with respect to a linear character.

Only one orbit of reflecting hyperplanes. Recall that a group G C GL(V) acts on its
set A of reflecting hyperplanes in V = F" with gH = H’ for g in G whenever a reflection in
G about H € A is conjugate by g to a reflection in G about H' € A.

Proposition 4.1. Let G C GL(V) be a finite group. Any two reflecting hyperplanes of G
with maximal transvection root spaces lie in the same orbit.

Proof. Fix two such hyperplanes H = ker £y and H' = ker £y:. Since the transvection root
space of H is maximal, we may choose a root vector v; of a transvection ¢ in G about H
with v1 ¢ H’'. Similarly, we may choose a root vector vo ¢ H of a transvection ¢’ in G about
H'. Extend vy, vy to a basis vy,...,v, of V (so vs,...,v, span H N H'), and rescale vy and
Cpp so that £ (ve2) = 1 while vy remains a root vector with respect to £gs. Then for the dual
basis z1,...,2, of V*, fg = 9 and £ = axq for some « in F*, and with this basis of V/,

10
al

Thus (¢,t') is isomorphic to a finite subgroup of SLs(FF). We use the classification of such
groups by Dickson, see [26, Chapter 3, Section 6] (see also Chapter 2, Theorem 6.8):

1) p=2and (t,t') = Do, the dihedral group of order 2m, with m odd, or

2) p=3and (t,t') = SLy(F5), or

3) (t,t") = SLy(F,) for some p-power ¢,
where p = charF. In the first case, the transvections of (¢, ') have order 2, so correspond to
the reflections in Ds,,, which all lie in the same conjugacy class as m is odd. In the second
case, the transvections have order 3, so similarly correspond to the elements of order 3 in
SLo(F5), which again are all in the same conjugacy class. As ¢ and ¢’ are conjugate in these
two cases, H and H' lie in the same orbit.

In the final case, we first notice that the transvections in Ky := SLg(F,) are precisely the
elements of order p, and the same is true for the group K := (t,t’) since K fixes vg, ..., v,.
Hence the transvections ¢, in K about hyperplanes H, H’, respectively, in V correspond
under the isomorphism to transvections to, t{, in Ky about some hyperplanes Hy, H),, respec-
tively, in Vg = FZ. But SLa(F,) acts transitively on the set of projective points in Fg, ie.,
all hyperplanes in Vj are in the same Kg-orbit. Thus the pointwise stabilizer subgroups
Stabg, (Ho) and Stabg,(H()) are conjugate in Ky, which implies that the pointwise stabilizer
subgroups Staby (H) and Stabg (H') are likewise conjugate in K. This follows from the fact
that all of these stabilizer subgroups have a purely group-theoretic description: the transvec-
tions in K about a fixed hyperplane are exactly the order p elements that commute with
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any fixed transvection about that hyperplane, and the same is true for K. Thus H and H’
lie in the same orbit, although ¢ and ¢ may not be conjugate. O

Proposition 4.1 has the following immediate implication.

Corollary 4.2. Let G C GL(V) be a finite group with transvection root spaces all mazximal.
Then G acts transitively on the set of its reflecting hyperplanes.

Remark 4.3. For a finite group G acting linearly, when reflecting hyperplanes H, H’' of
G are in the same G-orbit, their pointwise stabilizers Gy, Gy are conjugate in G. Thus
Corollary 4.2 implies that for groups G whose transvection root spaces are all maximal, we
have nonnegative integers e, b, J, and a; such that

e=ey, b=>by, 6 =0y, and a;, = agy forall H € A.

Twisted wedge product. We use the twisted wedge product of [13] on differential forms
invariant under the action of a reflection group G whose transvection root spaces are maximal:
for w,w’ in (S ®AV*)Y, we set w A W' := w-w' when rank w or rank w’ is 0 and

/\ /
(4.4) wiw = 2% hen rank w,w >1,

Qe
for e = ey for all H in A (see Corollary 4.2 and Remark 4.3). Here, we use the fact that Q¢
in S divides w A W' for all w, W in (S ® AV*)Y of rank at least 1 (see [13]). For wy,...,wy in
S ®@ V* and nonempty I = {i1,...,ix} C [n] with i1 < ... <, we set

. A A Wi

(4.5) W= wy A Awy, = Wiy Wiy, _ W1

Qe(kfl) Qe(kfl)

and w; =wj; A Awj, =1®1fork=0,1=0.

We next use Theorem 3.2 to slightly strengthen Theorem 10 of [13], noting that the ar-
guments in its proof hold even when S¢ is not a polynomial ring. We use the free exterior
algebra from [13]

AsG{Wh cwn} = S%span{wi, A Aw;, 11 <y < ... < < n} = S%span{w; : I C [n]}.

Theorem 4.6. Let G C GL(V) be a reflection group with transvection root spaces all maxi-
mal. Suppose (S @V*)C is a free S©-module with basic 1-forms wy, . ..,w,. Then wi, ..., wy
generate (S @ AV*)C as a free exterior algebra over SC wvia the twisted wedge product:

(S@AV)Y = A ga{wi,...,wn}.

Remark 4.7. Results of [13] and Theorem 4.6 suggest an analog of the q-Catalan number
for groups G with SL,(F,) C G C GL,(F,) (see Section 9) and more generally reflection
groups G C GL,,(F) with maximal transvection root spaces. For such groups with exponents
mi,...,my and S¢ =TF[f1,..., fu] for f; homogeneous of degree d;,

(1— qe\ﬂl) + quAI H?zl(l + qmi_e|ﬂ|t)
[T, (1 - qdi)

is the Hilbert series of the bigraded F-vector space of invariant differential forms,

Hilb((S ® AV*)%, q,t) =

Hilb((S @ AV, q,t) = > dimp(S; @ A"V ¢’ t".
i>0, k>0
For a real reflection group G with Coxeter number h, one takes t = —q"*! to recover the

g-Catalan number for G (see [2, 9]). For an extension to complex reflection groups, see [10]
(and also [25]). Here one might consider h = e|A| (see Remark 5.7).
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Semi-invariant differential forms. Let x : G — F* be a linear character of a reflection
group G. Then x must be the identity on all transvections in G as they have order p = charF.
This implies that Stanley’s argument [23] (see also [14],[20]) for reflection groups acting over
C extends to actions over F to show that

(4.8) S¢ =Q, S

for the polynomial @y := [[yca (if', where ¢ is the smallest nonnegative integer such
that x(sg) = det™“#(sp) for each H € A. Here, sy again is a diagonalizable reflection
about H of maximal order ey when eg > 1 and the identity otherwise. Thus for & = 0,
(S @ ANFV*)T =S¢ (Qy ®1). We give the structure for k& > 0 next.

Proposition 4.9. Let G C GL(V) be a reflection group whose transvection root spaces are
all mazimal. Then (S®AFV*)Y C Q,-1(S@AFV*) for any linear character x : G — F* and

(S®@ANVHS = L(S @ ANFVHE for k> 0.

Qx—1
Proof. Fix w € (S ® AFV*)¢ and let H = ker £z be a reflecting hyperplane of G. We use the
basis v1i,...,v, of V and z1,...,z, of V* of Eq. (2.2) and write w = ), fr ® x1 for some
fr € S. By [13, Lemma 4], f; is divisible by ¢/ when n ¢ I since by = n —1 and k > 0.
Additionally, the last equation in the proof shows that f; is divisible by ¢/ ! whenn e 1.
So w lies in EEH_IS ® AV* and, as H was arbitrary, in QqetS ® AV*. But Q1 divides Qqet,
so w lies in Q, 1S ® AV*. This implies that (S ® /\kV*)f O (S®AFV*)E/Q,-1. The reverse
inclusion follows from the fact that Q,-1(S ® /\kV*)g C (8 ® AFVH)E, O

5. DUALIZING DERIVATIONS AND 1-FORMS

In this section, we show that (S ® V)€ is free if and only if (S ® V*)€ is free over S¢ for
a reflection group G C GL(V) acting on V' = F” with transvection root spaces maximal and
give a duality between exponents and coexponents. Indeed, we show how to construct dual
invariant 1-forms from invariant derivations and vice versa. This in turn gives a condition for
the invariant differential forms to be generated as a free exterior algebra under the twisted
wedge product. We apply these results to GL,(F,) and SL,(F,) in Section 9.

Perfect pairing. We use a familiar perfect pairing between A¥V and A*~F V* = (AP —k V)*
related to the Hodge star operator: let ® be the isomorphism

"A
DAV S ATV B (B B 5),
voly
where voly = vy A - -+ A vy, is the volume form for a fixed choice of basis v1,...,v, of V.

Remark 5.1. Let z1,...,x, be the basis of V* dual to the basis vy,...,v, of V. For a
subset I = {i1,... i} of [n] = {1,...,n}, set I° = [n]\I, the complementary subset. Then
®(vy) = xe (see Eq. (2.4)) up to a sign given by the Levi-Civita symbol. In particular,

By A ATjA - Awy) = (1) ;.
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Dualizing map is semi-invariant. We extend ® to a function AV — AV*. Note that ¢
is a skew GL(V)-homomorphism with respect to the character det = dety of GL(V):

Lemma 5.2. The dualizing map ® is (det™)-invariant: for any g in GL(V),

g(®) =det™(g)®, e, god=det7l(g) Pog.
Proof. Fix k and recall that g(voly) = det(g)voly. For any 3 € AV and g € A" FV,
g‘lﬁ’Ag‘lﬁ> B'AB

VOIV

((92)(8)(8) = (9(@(g™"BN)(B) = g(@(g7'B)(97*8)) = 9

which is just det™*(g) ®(8)(5). O

~ det(g)voly ’

Dual 1-forms. We use this perfect pairing to construct G-invariant 1-forms from G-invariant
derivations via the linear map

1P :SROAV - S AV*.

Proposition 5.3. Consider a reflection group G C GL(V). Suppose (S @ V)Y is a free
SC -module with basic derivations 61, . ..,0,. For each 1 <i < n, define dual 1-forms

wi= 0 = (1®<I>)<Qdet91/\---/\§i/\---/\9n> cS@V*.

Then wy ... ,w, are a basis of (S @ V*)Y as a free SY-module if and only if the transvection
root spaces of G are all mazimal, in which case wy,...,w, also generate (S@AV*)Y as a free
eaterior algebra over S¢ wia the twisted wedge product of Eq. (4.4).

Proof. Since G is a reflection group, Qget is det-invariant (see Eq. (2.1)), and hence each w; is
indeed invariant by Lemma 5.2 as the 6; are invariant. We assume without loss of generality
that the 6; are homogeneous. Let A be the coefficient matrix Coef(y, ..., 0,) so det A = @ by
Theorem 3.2. The determinant of the minor matrix A;; is precisely the polynomial coefficient
of vy A+ AUFA-- - Avy in Gy A - -/\@-/\- -~ AB,. We replace each w; by (—1)"*! w; so that the
sign changes coincide with those for the cofactors ¢;; in the cofactor matrix C' = (det A)A~"
of A (see Remark 5.1). Then

n
each w; = Y  Qet Cij ® and  Coef(wy, ..., wn) = Qaet C = Q Qqet A~F.
j=1
Thus det Coef(ws ... ,w,) = Q"Q1, det A=H = Q"1 Q" ., which equals Q(jl) Qaet exactly
when the transvection roots spaces are maximal, i.e., by = n — 1 for all H € A. The claim
then follows from Theorems 3.2 and 4.6. ]

Dual derivations. Alternatively, one may use ®~! to define dual derivations. We provide
a brief proof in the same style as that for Proposition 5.3.

Proposition 5.4. Consider a reflection group G C GL(V') for dimV = n > 1 with transvec-
tion root spaces all mazimal. Suppose (S @ V)& is a free S¢-module with basic 1-forms
Wi,y Wn. Foreach 1 <i <mn, define dual derivations

Qdet .
Then 01, ...,0, are a basis of (S® V) as a free SE-module.

0; = w! = (1@@*1)(
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Proof. By Proposition 4.9, Q4et divides in S @ AV* the indicated twisted wedge product and
the quotient is (det_l)—invariant. By Lemma 5.2, the map ®~! is itself det-invariant and
thus each 6; lies (S ® V). Consider the coefficient matrix A = Coef(ws,...,w,) and the
cofactor matrix C = {¢;j} = (det A)A~" of A. We assume without loss of generality that the
w; are homogeneous. Then det A = Q°"~! by Theorem 3.2 (as by =n — 1 and e = ey for all
H € A) and, after replacing 6; by (—1)**!6; to match the sign changes of C,

— - # — # = NepA—t
each 6; = Z 02 Ot and  Coef(61,...,0,) = 0TI O Q°A".

j=1
The claim follows from Theorem 3.2 since det Coef(fy, . ..,60,) = Q" det A™t = Q. O

Remark 5.5. A version of Proposition 5.4 also holds when n = 1 provided we again apply
(1® @~ 1) to a generator of (S ® /\7“11/*)§et_1 (see Proposition 4.9). For n = 1, we use the
bases v of V and z of V* as well as the derivation § and 1-form w from Example 3.10. Here,
(5’@/\"*1V*)dcet,1 =5%(Q®1) since Q = Quet-1 = ¥, see Eq. (2.1) or Eq. (4.8), so we apply
(1®® 1) to Q®1 to dualize w:

=12 HQel)=Qeuv=r2v=_0.
Note that the dual of 8 here by Proposition 5.3 is just
0" = (1 ® (D)(Qdet ® 1) = Qdet Kr=w for Qdet = «77671 .

Duality of exponents and coexponents. Propositions 5.3 and 5.4 imply an analog of the
duality of exponents and coexponents (see [15]) for well-generated complex reflection groups.
Recall that for any finite group G, if (S ® V*)% is a free S“-module, the set of polynomial
degrees in a homogeneous basis does not depend on choice of basis, and likewise for (S ® V)G.

Corollary 5.6. Let G C GL(V) be a reflection group with transvection root spaces all mazi-
mal. Then (S®V)Y is a free SC-module if and only if (S@V*)Y is a free SE-module. When
both modules are free with respective homogeneous bases of polynomial degrees mj,...,my
and mqy,...,my, then

m; +m; = e|Al,

after possibly reindexing, where |A| is the number of reflecting hyperplanes of G and e is the
mazximal order of a diagonalizable reflection in G.

Proof. Suppose 01, ...,0, are a homogeneous S%-basis of (S ® V)%. Then the dual 1-forms
wi, ..., wn afforded by Proposition 5.3 give an S%-basis of (S® V)& with

mi = degw; = deg Qqet —i—ZdegHj = deg Qqet +deg Q —deg; = edeg Q —m; = e|A| —mj,
JFi

since w; is dual to 6; and Qget@ = Q. Alternatively, if the 1-forms w,...,w, are an SC-
basis of (S ® V*)Y, then the dual derivations 61, ...,60, are an S%-basis for (S ® V)¢ by
Proposition 5.4 (use Remark 5.5 when n = 1) with again m; + m] = e|A|. O
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Remark 5.7. Recall that the exponents m; and coexponents m; of a duality (well-generated)
complex reflection group G C GL,(C) (e.g. any Weyl or Coxeter group) may be ordered so

degQJ _ deg QQuerQ(A)
n

n

m; +m; = Coxeter number = deg f,, =

as » ;m; = deg@ and ), m; = degJ for the Jacobian determinant J = det{3 of ’} = Qet =

QaetQ(A ) as G contains no transvections. Here, f1,..., f,, are homogeneous basic invariants
for G ordered with nondecreasing degrees. One thus may be tempted by Corollary 5.6 to
regard the integer

e|A| = (maximal order of a diagonalizable reflection) - (#reflecting hyperplanes)

as the Coxeter number of a reflection group G C GL,(F) for arbitrary F with transvection
root spaces all maximal. In this case, we use QQget@(A) in favor of the discriminant QJ
and note that

) ML AL (e = DAL (1= DelA] _ des QQuu@A)

n n n
Reflection groups with transvection root spaces all maximal thus may serve as modular
analogues of the duality (well-generated) complex reflection groups (also see Section 9).

6. STRUCTURE THEOREM FOR INVARIANT DIFFERENTIAL DERIVATIONS

We investigate the structure of (S ® AV* ® V)¢ when G € GL(V) is a reflection group
with transvection root spaces maximal. Such is the case when SL,(F,) € G C GL,(F,)
(see Section 9) or G is the pointwise stabilizer in SLy,(F,) or GL,(FF,) of a hyperplane in V,
for example. Recall that (S ® V)¢ is free if and only if (S ® V*)¢ is free over S¢ in this
setting (see Corollary 5.6). We start with basic derivations in (S ® V)¢ and use the dual
1-forms in (S®V*)% afforded by Proposition 5.3 to construct an S¢-basis for (S@AV*®@V)E.
Alternatively, we could instead construct the same S%-basis for (S@AV*® V)% starting with
basic 1-forms in (S ® V*)& and using the dual derivations in (S ® V)& from Proposition 5.4.

We suppose char[F # 2 in this section and save the charF = 2 case for Section 7. Recall
that V = F" and we write I € ([Z]) when I C [n] ={1,...,n} with |I| = k.

Lemma 6.1. Consider a reflection group G C GL(V') with transvection root spaces all mazi-
mal. Suppose (S@V)Y is a free SE-module with basic derivations 61, ... ,0, and dual 1-forms
Wi, ...,wn. Then the followmg two subsets of (S @ AV* @ V)Y of size m = n(y) are F(S)-
mdependent foranyr=1,. ,n.

° {dﬁE}U{wlel,..., wy Oy, [n}}\{wrﬂr}
° {w}@l,...,w}@r_l,w}ﬁrﬂ,...,w}ﬁn:IC [n], TGI}U{w}dﬂE,w}Gl,.. ,wpbn: I C[n I}

Proof. Fix r and note that the given forms indeed all lie in (S ® AV* ® V) (see Eq. (4.4)
and Proposition 5.3). For each k, denote the collection of elements of rank k in the first set
in the claim by By, and in the second set by B). When k = 0, By, = B} = {61, ...,0,}, which
is independent over F(S) as it is a basis of (S ® V)&. Note that Lemma 2.6 implies that
Cr={w;0;: 1€ ([ ]) 1 < j < n} is independent over F(S) for all k. As By = €, for k > 2
and By = B, it is left to show that, for £ > 1,

w={wrb;:I¢€ ([Z]) withr ¢ Tor j#r}U{w;dip: 1€ (k[ﬁ]l) with r ¢ I}
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is independent over F(.S). Recall from the proof of Proposition 5.3 that

Coef(wi, ..., wn) = Qaet C = Q Qaes A™" for Coef(fy,...,0,) = A,
after replacing w; by (—1)""w;, where C = {c¢;;} = (det A) A~* is the cofactor matrix of
A ={a;j}, as det A = @ by Theorem 3.2. Then wy, = Qdet Y _; Cmi @x; and 0, = Zj Amj Q@ Vj
for 1 <m <nand, as C* A = (det A) I,

n

Zwm9m=QdetZ<Zcmiamj) ® z; ® vj iQdetZQ®xi®vi =Q diE.
m=1 7

] m=1

Hence, for any I C {1,...,n},

1 « 5N Wi,
Wiy = — S (W Awm) O = > (u) O .
Q° m=1 megl Q°
Thus each w; dfg lies in the F(S)-span of € with nonzero coefficient of wy | {T}Gr when r ¢ 1.
As the various sets I U {r} with r ¢ I are distinct, B is F(S)-independent for k£ > 1. O

Now that we have F(S)-independent sets of the appropriate size, we show that they each
yield a basis of (S®@ AV*® V). We obtain Theorem 1.2 of the introduction, again using the
dual 1-forms of Proposition 5.3:

Theorem 6.2. Let G C GL(V) be a reflection group with transvection root spaces all mazximal
and charF # 2. Suppose (S ®@ V) is a free SE-module with basic derivations 0y, ...,0, and
dual 1-forms w1, ...,wp. Then (S @ AV* @ V)% is a free SC-module with basis

{d0p} U{w;61,...,wiby: I C[n]}\ {wb,} foranyr=1,... n

Proof. Fix r and assume without loss of generality that the 6; are homogeneous. For each k,
let By be the collection of elements in the proposed basis of rank k. Then By is an F(5)-
independent subset of (S ® A*V* @ V)¢ by Lemma 6.1. It suffices to show by Theorem 3.9
that >, 5, degn = Ay for

deg @) when k£ =0,
A =1 (en? —e)degQ when k=1,
(\)(en —k+1)deg@ when k> 2.
When k =0, By, = {01,...,0n}, so indeed ), .5 degn = deg@ = Ag by Theorem 3.2.
When k =1, By, = {d0g} U {wb; : (i,5) # (r,7)}, thus
Z degn = Z degw;0;—degw,0,+degdfr = n Z degw;+n Z deg ; —deg w0, +deg db,
n€B1 1<i,j<n i J
which is (en? — e) deg @ = A; since Y, degw; = (en — 1) deg @ and >_jdegt; = deg@ by
Theorem 3.2 (see Proposition 5.3), degdfp = 0, and (see the proof of Corollary 5.6)
deg w, 0, = degw, + degf, = e|A| = edeg Q.
When k > 2,
Z degn = Z degw;0; =n Z degw}—F(Z)Zdeng.
J

P (s ()
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As degw} =Y icrdegw; —e(k —1)degQ (see Eq. (4.4)) and n("_}) = k(}), this is
1 Zdegwi—n e(k—1)degQ + (} Zdeg@ =(p)(en—k+1)degQ = Ay, 0

Remark 6. 3 Theorem 6.2 implies that {w;6; : I € ([”]) 1 < j < n}is an S%-basis of
(S@A*V*@ V)% when k > 2 for a reflection group G C GL(V) with transvection root spaces
all maximal and char F # 2, provided (S ® V)¢ is free with basic derivations 61,...,6, and
dual 1-forms wq,...,wy,.

We see in Section 7 that the following corollary of Theorem 6.2 also holds when char F = 2.

Corollary 6.4. Suppose charF # 2. Let G C GL(V') be a reflection group with transvection
root spaces all mazimal. If (S @ V) is a free S©-module, then so is (S @ A\V* @ V)¢

We give an alternate basis from which we derive a module structure in Corollary 6.7, again
using the dual 1-forms of Proposition 5.3.

Theorem 6.5. Let G C GL(V) be a reflection group with transvection root spaces all mazimal
and charF # 2. Suppose (S @ V) is a free SY-module with basic derivations 0y,...,0, and
dual 1-forms wi, ... ,w,. Then (S @ AV* @ V)Y is a free SE-module with basis

{wibr, ... ,wyOp_1,wyOpp1,...,wi by I Cln],r €I} U{w;dip,wibh,..., w6, :1Cn],r¢l}
foranyr=1,...,n.

Proof. Fix r and assume without loss of generality that the #; are homogeneous. For each k,
let B} be the collection of elements in the proposed basis of rank k. Then B} is an F(S5)-
independent subset of (S®@AFV*® V)¢ by Lemma 6.1. We argue that ZneB; degn coincides
with EneBk deg n, where By, is the collection of elements in the basis afforded by Theorem 6.2
of rank k for this fixed r. It will follow then from Theorem 3.9 that B is also a basis.

Notice By = B} for k = 0,1, so assume k > 2. Recall that degw,8, = edeg@ (see the
proof of Theorem 6.2). Then for nonempty I C {1,...,n} with r ¢ I,

degwrygry0r = degwy A w0, = degw; + degw, b, — edeg Q = degwy = degw; dfp .

Thus, as k > 2, the elements in By not in Bj, have the same polynomials degrees as the
elements in B} not in By, and thus ZneB; degn =3, cp, degn. O

Remark 6.6. Recall again that when the transvection root spaces of a reflection group G
are all maximal, (S ® V)% is free over S¢ if and only if (S ® V*)¢ is free over S (see
Corollary 5.6). For Theorem 6.2 and Theorem 6.5, rather than assuming that (S ® V)¢
free and using the dual 1-forms, we may instead assume (S ® V*)% is free and use the dual
derivations of Proposition 5.4 (see Remark 5.5 for n = 1) to obtain the same S%-bases of
(SRAV*® V)@, Indeed, the proofs simply rely on the fact that w; and 6; are dual.

Module structure over twisted subalgebra. For a well-generated complex reflection
group G, (S ® AV*® V)Y is a direct sum of submodules of rank 1 over

/\{wl, . ,wn_l}
SG

for homogeneous basic 1-forms wy,...,w, with w, of maximal polynomial degree (see [16,
Theorem 1.1]). One asks if a similar result holds over arbitrary fields F for reflection groups
whose transvection root spaces are maximal. Theorem 6.5 implies a more subtle decompo-
sition with three key differences from the characteristic zero setting: here we may omit any
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one of the basic 1-forms in constructing a suitable subalgebra of invariant differential forms,
we use the twisted wedge product of Eq. (4.5) instead of the regular wedge product, and we
require an ideal of invariant differential forms. We define for r =1,...,n

A= Nge{wr, .. @, ywnt = S%span{w) : I C [n],r ¢ I} C (S®AVHC
and use the ideal generated by w, under A:
Ay A w, := S%span{w; : I C [n] with r € I}.
The following corollary of Theorem 6.5 provides a module structure over A,.

Corollary 6.7. Let G C GL(V) be a reflection group with transvection root spaces all mazi-
mal and charF # 2. Suppose (S ®@ V)Y is a free S-module with basic derivations 0y, .. .,0,
and dual 1-forms w1, ...,wy. Then, for anyr=1,...,n, (S@AV*® V)G is a direct sum of
A, -submodules:

SNV @ V)¢ =P A 00 (A Lw,)0; @ A, dig.
j=1 J#r
Hilbert series. We consider the Hilbert series of the bigraded F-vector space of invariant
differential derivations:

Hilb((S@AV*®@ V)% q,t) == > dimp(S @AV @ V)% g th.
>0, k>0

For a Coxeter group G, this Hilbert series gives the first Kirkman number (see [18, 1, 2, 17]).

Corollary 6.8. Let G C GL(V) be a reflection group with transvection root spaces all maz-
imal and charF # 2. If (S ® V)% is a free SC-module with homogeneous generators of
polynomial degrees m7y,...,my,, then

Hilb((S @ AV* @ V)%, q,1)

= Hilb(5,q) (t = ot + (3 q™) (1 = ¢ 4+ M T[(1 + a7™iv)) ).
i=1 i=1

where e is the mazimal order of a diagonalizable reflection in G and |A| is the number of
reflecting hyperplanes of G.

Proof. Say 01,...,0, is a homogeneous S%-basis of (S ® V) with degf; = m;. Consider
the dual 1-forms wy, ..., wy of polynomial degree m; = degw; = e|A| —m} of Proposition 5.3
(see Corollary 5.6) and set A = Ap{wi,...,w,} = F-span{w; : I C [n]}. Then Theorem 6.2
(with r = n for example) implies the result: Hilb((S ® AV* ® V)%, q, t) is Hilb(SG, q) times

Hilb(@lﬁ‘w} Qj,q,t) _ Hilb(]Fwn 0, q,t) + Hilb(Fdfg, q,t)
1y

and a computation confirms that Hilb( D, ; Fw; 65, q,t) is

Hilb(A,q,t) - Hilb(®; Fb;,q,t) = (1 — q°Ml 4 qeMl ﬁ(l + gl t)) (z”: qm;‘k) .
i=1 i=1
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See Section 9 for examples of reflection groups with transvection root spaces maximal.
Groups fixing a single hyperplane pointwise provide other examples, see Proposition 3.8
(with by = n —1) and Eq. (2.2). Note that the hypothesis that the transvection root spaces
of GG are all maximal in Theorem 6.2 is critical, as we see in the following example.

Example 6.9. We consider a reflection group G over F, for a prime p > 2 where S% is not
a polynomial algebra (see [7, Section 8.2]):

0900 (0100Y) (0900 0100
G= 1010 )>\0010 )>{ 1110 = aclo | abcely,.
0001 0101 1101 cb01
Here, Q = 229 — z125 and ey = by = 1, and §y = 0 for each reflecting hyperplane H of G.

Both (S ® V)¢ and (S ® V*) are free S%-modules with respective bases {#;} and {w;} for
01 =1® vs, 03 =21 Qv + 22 @ V2 + T3 Q@ vz + T4 D vy,

f2 = 1 ® vy, 0y = 2} @ v1 + 2h @ vy + 2k @ v3 + 2] ® vy,
w =1Q® x1, w3 =23Qx1 +T4RQx2 —x1 QT3 — T2 X x4,
wo =1® x9, w4:x§®x1+xi®x2fa:€®:v37xg®x4.

None of the transvection root spaces are maximal, and the conclusion of Theorem 6.2 fails:
{d0g} U {wib; : (i,7) # (a,b)} is not an S%basis of (S ® V* @ V)¢ for any (a,b).

Remark 6.10. The arguments of Sections 5 and 6 apply when charF # 2 to any finite
group G with transvection root spaces maximal if det(g)¢ = 1 for every g € G, where e is the
maximal order of a diagonalizable reflection in G. Indeed, in this case, Qget is det-invariant
and the arguments in the proofs of Sections 5 and 6 show that (S ® AV* ® V)& is free over
S when (S ® V)¢ is free over S, with explicit basis given by Theorem 6.2 or Theorem 6.5.
However, we have yet to even find an example of a nonreflection group whose transvection
root spaces are all maximal with (S ® V)& free over SC.

7. THE CASE OF CHARACTERISTIC 2

In this section, we consider the case when charF is 2 and G is a reflection group with
transvection root spaces maximal. Examples include SL,,(F,) and GL,(F,) for ¢ a power of
2. The structure of (S®AV*®V )Y may differ from that in Section 6 where char F # 2. Indeed,
in Appendix A, we must distinguish the groups whose pointwise stabilizers of hyperplanes
consist of exactly one transvection and the identity element, i.e., iy = 1 for all H in the
reflection arrangement A, which only occurs when charF = 2 (see Eq. (3.3)).

Theorem 7.1. Let G C GL(V') be a reflection group with transvection root spaces all mazximal
and charF = 2.

o If[A| =1, (S@V)Y, (S®@V"Y, and (S@AV*@ V)Y are free SY-modules with structure
given by Lemma 3.1 and Proposition 3.8.

o If|A|#1 and Gy comprises a single transvection and the identity for each H € A, then
(S@V)E, (S VY, and (S AV* @ V)Y are free S©-modules. In this case, n = 2
and (S @ AV* @ V) has rank 4 over an S€-submodule of (S ® A\V*)E of rank 2.

e Otherwise, (SRAV*@V)Y is a free SY-module, provided (S®@V )Y is a free S¢-module,
with bases given by Theorems 6.2 and 6.5 and module structure given by Corollary 6.7.

Proof. For the first claim, we just appeal to Lemma 3.1 and Proposition 3.8. In the case of
the third claim, 67 = 0 for some H € A (see Eq. (3.3)) so in fact g = 0 for all H € A by
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Corollary 4.2 (see Remark 4.3). Then the arguments in the proofs of Theorems 6.2 and 6.5
and Corollary 6.7 hold.

Now assume we are in the setting of the second claim. Then dz = 1 for every H € A and
there are nonnegative integers e, b, and aj, such that e = ey, b = by, and ap = apy, for all
H € A (again see Remark 4.3). In this case, G contains no diagonalizable reflections and
e = 1. Further, each transvection root space of G has dimension b = 1 as it is spanned by
a single transvection. But this forces dim V' = n = 2 as each transvection root space is also
maximal, and thus G is a finite subgroup of SLy(F) as G is generated by its transvections.
Then G must be isomorphic (as an abstract group) to some dihedral group Da,, of order 2m
with m odd by the classification of Dickson (see [26, Chapter 3, Section 6]). There are exactly
m elements of order 2 in Dy, as m is odd, and thus |A| = m is odd as the transvections are
the only elements of order 2 in G and there is only one transvection per hyperplane. Hence
deg @ is greater than 2 and is odd as |A| # 1.

As @G is generated by two transvections, there is some o € F* and a basis vy,v9 of V
with dual basis z1,z of V* so that G = ((§1),(L7)). The following derivations 6,6, are
an S%basis of (S ® V)% (see, e.g., [15, Section B.2]), and their dual 1-forms wy,ws are an
SG-basis of (S ® V*)& by Proposition 5.3:

61 ax2®”1+ax Quz, b=z ®vI+22Q02,
W =0T +T1 0Ty, W= QT+ s @Tp.

We now give an explicit S%-basis for each (S ® A*V* @ V)& using Theorem 3.9.

For k = 0, the derivations 61,0, are an S%-basis as they are F(S)-independent and have
polynomial degrees summing to deg Q.

For k = 1, we argue that the four forms w;61,w162,d0g,ny are F(S)-independent, lie in
(S ®V*® V)Y, and have polynomial degrees summing to 2 deg @ for

o = Q_I(LL)le + fdegQ_2U.)192) with f= I‘% + 119 + Oé_ll‘g S SG .

First notice that the forms wy61, w1602, w201, webs are F(S)-independent by Lemma 2.6, which
implies that w161, w102, w261, d0E are also F(S)-independent since

w101 4 waby = (561@31 +$23x2)®931 ® vy + (331351 +$28$ ) @2 ® vy = (deg Q) Qdbp # 0

as deg @ = |A| is odd and @ is homogeneous, using Euler’s identity. This implies that
w101, w102,d0g, no are also F(S)-independent.

Second, we claim that 7y € (S ® V*® V)Y, i.e., that 1y has polynomial coefficients and is
G-invariant. Since f and @) are G-invariant (as e = 1), so is 9. Observe that

Qno —(gfl gfz 4 flee@= 2:81@2) ®z1 Qv + ((axz) 4 flee@=2 2) ® x2 @ V1
+ (820 + 1) et ($282 4 190 2rm) a0

Notice that x divides g—g (apply [13, Lemma 4] to wa), which implies that x3 divides the first,
third, and last coefficients in this expression. Then, as the factors of () are relatively prime,
x9 does not divide 87%, and we may rescale ) without loss of generality so that the term

%deg@ % in (gTQ) cancels with the same term in f4°69=222 which implies that 2o divides
2

the second coefficient as well. Hence, Qnp € 22S5®V*® V. Then as the reflecting hyperplanes
of G are all in the same orbit by Corollary 4.2 and Qg is invariant, Qny € gS QV* @V
for any H in A, and thus Qny € QS ® V* ® V. Hence, 7y indeed lies in (S ® V* @ V)¢
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Finally, note that the polynomial degrees of w161, w105, d0E, no add to 2deg @, and thus these
differential derivations are an S%-basis for k = 1.

For k = 2, the forms widfp and winy are an S-basis since they are F(S)-independent
with polynomial degrees that add to deg Q.

Hence 61,05, w101, w102, d0E, no, w1d0g, wing are an SC _basis of (S®AV*® V)G. Thus

(S@AV* @ V)< = R-span{fs, 0, d0p,no}

for R = S%span{l ® 1,w;} C (S ® AV*)® and the R-module (S ® AV* ® V)¢ has rank 4.

Alternatively, we note that 601,02, w101,w162,10,d0p, (w1 A we)b1, (W1 A w2)bs also are an
S basis of (S ® AV* ® V)@, This is because (w; A w2)f1, (w1 A w2)fe are an S%-basis for
k = 2: they are F(S)-independent with polynomial degrees that add to deg@. We compare
with Theorem 6.2 and observe that this alternate S@-basis of (S ® AV* @ V) is

{d0, 1m0} U{wj01,i0 : 1 C [2]}\ {wa1, a0} -
Theorem 7.1 and Corollary 6.4 imply the following.

Corollary 7.2. Let G C GL(V) be a reflection group with transvection root spaces all mazi-
mal and charF arbitrary. If (S @ V)9 is a free S%-module, then so is (S @ A\V* @ V)Y,

Example 7.3. Let G = SLy(F2). Here, Q = 222 + x123 and each Gy consists of exactly
one transvection and the identity, so e = b = § = 1. Then (S ® V)¢ is free over S¢ with
basis 01,02 and (S ® V*)% is free over S with basis wy,ws (see Theorem 3.2) for
0y =2i Qu1+a5Qv2, by =1x1 Qv+ 32O vy,
w1 =22QRx1 +21 Qx2, Wy ::E§®:L’1 —l—:v%@scg.
As 23 + 2129 + 22 lies in S, the proof of Theorem 7.1 gives an S%-basis of (S@AV*®@V)%:
=221 +22R01Q0v, fh=2010v +13 11 v,

w101:xf@@xl@vl+x§®x1®v2+xi’®zz®vl+$1$§®z2®v2>
w102=x1x2®x1®v1+x§®x1®v2+aﬁ®x2®v1+x1xz®wz®v27
dIp =111 v +1R® 22 ® vy,

o= (1 +22) ®T1 @V + 22T ® V2 + 21 Ty @1 + (X1 + T2) ® g @ va,

Wdlp =21 @TI AT @V + T2 T ATy @V, Wiy =22 QL1 ATy @1 + 25T A 2o @ vy

8. PrRIME FIELDS

We now consider finite groups G acting on vector spaces over a prime field F = [, for a
fixed prime p. We observe that (S ® V)%, (S ® AV*)Y and (S @ AV* ®@ V)¢ are free SC-
modules when G is a reflection group with transvection root spaces maximal and produce
bases. Examples include SLy,(F,) and GL,(F,), see the next section.

Reflection arrangements. We first examine arrangements over prime fields when the
transvection roots spaces are maximal. Recall that A = A(G) is the collection of reflect-
ing hyperplanes of a group G acting linearly.

Lemma 8.1. Let G C GL(V) be a finite group acting on V. = Fy, for p a prime. If
H, H' € A with the transvection root space of H mazimal, then A contains all hyperplanes in
V containing H N H'.
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Proof. Say H = ker g and H' = ker gy for £,y € V*. A hyperplane in V containing
H N H' must be the kernel of ¢y + ¢y for some ¢ € F,. As the transvection root space of
H is maximal, G contains a transvection ¢t about H whose root vector v; lies outside of H’,
ie., Lp(ve) #0. Set a = (U (v)) te in Fp, and regard a as an integer. A straightforward
calculation confirms that the kernel of £g/ + ¢/ is the reflecting hyperplane of t=% 5" t* for
any reflection s’ in G about H’ and thus lies in A. O

Proposition 8.2. Let G C GL(V) be a finite group acting on V = Fy, for p a prime, with
transvection root spaces all maximal. Then the reflection arrangement of G coincides with
that for the general linear group (embedded in GL(V')) of some subspace W of V:

A(G) = A(GL(W))  for some GL(W) C GL(V).
Thus there is a basis x1,...,x, of V* with A(G) defined by, for some m,

Q=961< H$2+C¥1$1>( H$3+OZ29€2+C¥1$1)"'< H xm+06m7133m71+"'+041$1>~

oy €Fp ay,az€F, Q1,000 —1 €EFp

Proof. Let Hy € A = A(G) be arbitrary and set A; = {H;}. Inductively choose some
H; € AAAj—1 and set A; = {H € A: H D HyN---N H;} to obtain a maximum set of
hyperplanes Hi,..., Hy, for which A,, = A. Choose z; in V* so that H; = ker(z;) € A
and notice that x1,...,z,, is F-independent since dim(Hy N...N H;) = n — i for all 1 < m.
We extend to a basis x1,...,z, of V*. By Lemma 8.1, any nonzero linear combination of
linear forms defining hyperplanes in A defines a hyperplane again in A. Thus for each i < m,
Ai ={H : lg € Fp-span{z1,...,z;}}, and the claim follows. O

Free arrangements. Recall that an arrangement of hyperplanes A is free if the set of
derivations D(A) along the arrangement is a free S-module, see [15], where

D(A) ={6 € Derg : 0({y) € £y S for all H € A}.

(Recall that we identify >, fi ® v; in S ® V' with the derivation ), f; ® 0/0z;.) Bases for
the free modules in the next corollary are given in Proposition 5.3 and Theorem 6.2 using
the derivations in the proof. Also see the proofs of Theorem 7.1 and Proposition 3.8.

Corollary 8.3. If G C GL(V) is a finite group acting on V. = F for p a prime with
transvection root spaces all mazimal, then A(G) is a free arrangement. If, in addition, G is
a reflection group, then (S ® V), (S @ AV*)E, and (S @ A\V* @ V)Y are free S¢-modules.

Proof. By Proposition 8.2, A = A(G) = A(GL(W)) for a subspace W of V' of dimension m.
We use the basis x1,...,x, of V* of Proposition 8.2 and dual basis v1,...,v, of V and set

n .
Z:L’p ® v; for1 <i<m,
0; = ’
i — j=1

1®v; form<i<n

so that det Coef(61,...,60,) = Q. Then as each 0; lies in D(A), the 0; generate D(A) as an
S-module and A is a free arrangement by the original Saito’s Criterion [15, Theorem 4.19].
Now assume further that G is a reflection group. Notice that each 6; for i < m is invariant
under GL,,(F,) (see Section 9) and that §; for m < i is invariant under each reflection of G
since Um+1,---,Un lie in ﬂH6A H. Hence 64,...,60, are G-invariant and are an SG basis of
(S® V)¢ by Theorem 3.2. Then (S ® AV*)Y and (S ® AV*® V) are both free S¢-modules
by Corollary 5.6 and Corollary 7.2. O
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9. SPECIAL AND GENERAL LINEAR GROUPS AND (GROUPS IN BETWEEN

We now turn our attention to the special linear group, the general linear group, and
all groups in between over a finite field IF, for ¢ a prime power. Let G be a group with
SL,(Fq) ¢ G € GL,(F;). Then G is generated by reflections, and, as G contains SLy(Fy),
each transvection root space for G is maximal and there is a single orbit of reflecting hy-
perplanes (see Corollary 4.2). The maximal order of a diagonalizable reflection in G is
e := |G : SL,(Fy)|. Here, A = A(G) is the collection of all hyperplanes H in V' =y and its

defining polynomial Q =[]y, {n thus has degree |[A| =[n]g =14¢+- - +¢" ",

Invariant polynomials. Basic invariant polynomials fi, ..., f, with S& = F[f1,..., f.] are
given in terms of the classical Dickson invariants D,, ; (see [24] and [21]) with deg D), ; = ¢"—¢'
fori=0,...,n—1:

leQe and fi:Dn,ifl fOI‘2§Z§7’L

Invariant derivations. Here, (S ® V)% is a free S“-module with basis

n .
0; :ngn_z ®uvj for1<i<n
j=1
with respect to a fixed ordered basis v1,...,v, of V and dual basis x1,...,z, of V* (see [15,
Example 4.24]) since Q) = det Coef(0y, .. ., 0,,) after rescaling Q) if necessary (see Theorem 3.2).

Invariant 1-forms. Proposition 5.3 gives a dual S%basis of (S ® V*)C: explicitly, let
Wi,...,wy in S ® V™ be the 1-forms whose coefficient matrix is (for ¢ indicating transpose)

Coef(wy, ... ,wp) = Q° (Coef(ﬁl, ce Hn))_t )

Then det Coef(wy,...,w,) = Q! and wy,...,w, are a free S@-basis of (S ® V*)¢ by
Theorem 3.2. These moreover generate (S ® AV*)Y via the twisted wedging of Eq. (4.4):

(S@AVHY = Asc{wl, ... wp} (see Theorem 4.6 and [13]). See [13, Section 6.2] for basic
1-forms in terms of the exterior derivatives df; of the Dickson invariants.

n 7

Numerology. For m; = degw; = e[n], — ¢" ¢ and m} = deg; = ¢"~* (see Corollary 5.6),
m; +m; = e|Al.
Explicitly, the duality gives (also see Remark 4.7 and Remark 5.7)
m; = [n]g — ¢t and mf=¢"" for G = SL,(F,) , and

m; = (¢ —Dn)g —¢" and m} =¢"" for G =GL,(F,).

7

Invariant differential derivations. For G = SLy(F3), we construct in Example 7.3 an
explicit basis for (S®@AV*® V)% as a free S-module. Theorem 6.2 and Theorem 7.1 imply
a similar result for all other groups between SL,(F;) and GL, (F,):

Corollary 9.1. Let G be a group with SL,(F;) C G C GL,(F;) and G # SLy(F3). Then
(S@AV* @ V)Y is a free SE-module with basis

{deE}U{(wilA"'Awik)ej:1§i1<-~~<ik§n71§j§n70§k§n}\{wn‘9n}'
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Example 9.2. For the reflection group G = SLg(F3) acting on V = F3,
basic derivations 6 =z} Qv + 25 @ vy, b=z Qv +x2 @ vy and
basic 1-forms W =TaQT] — T Ty, wo=—T5Qx +T5 Qa9
generate (S ® V)¢ and (S ® V*)%, respectively, as free S%-modules. Then the S¢-module
(S @ AV* ® V)Y is also free with basis
=221 +1501Q0v, fh=1010v +2:0 1 vs,
w161 :xi’xg@xl X vy +x§®x1 ®vg—x%®x2®v1 —x1x§®x2®v2,
Wil =172 @ T QU + T3 R T @V — T @ T @V — T1T2 @ To @ V2,
wal = —xi’x%@xl@vl —mg®x1 ®v2+x?®m2®vl +x?x§®x2®vg,
dIp=102100 +1R® 22 ® vy,
(w1 A wa)by :xi’@)ml A 2o ® v +m§’®x1 A xo ® vy,
(Wi Awa)la =21 @21 AT @V + T2 @1 A T2 ® Uy
Here, S¢ = F3[f1, fo] for fi = x3xs — 2123 and fo = 2§ + xixd + 2324 4 2§.
Example 9.3. For the reflection group G = GL(F3) acting on V = F3, the SE-modules

(S ® V)% and (S ® V*)¢ are both free with respective bases 1,60y (basic derivations) and
w1, wsy (basic 1-forms) given by

01 :x‘;’@)vl +x§®v2, Oy =21 @1+ To Qg
wi = (2322 — z12d) @ 11 + (2223 — 2ix) @ 20, wo = (w125 — 232} @y + (aSzy — 2l2d) @ 2y
The S%module (S ® AV* ® V)¢ is then free with basis
=210 +2501Q1vs, fhh=2,010v +1201Q vy,
w1 = (2822 — zizd) @z @ vy + (2325 — z120) @ 1 @ vy
+ (2325 — 2l20) @ 1y @ vy + (222§ — 2113) @ T2 @ g,
w1y = (zt22 — 222} @z Qv + (2323 — 1123) @ 1 R vy
+ (232 — 2510) @ 1y @ vy + (225 — 2]73) @ T2 @ g,
woly = (z12§ — 2%23) @ 1 @ vy + (z12) — 23] @ 1 @ vy
+ (220 — 2123) @ 12 @ vy + (2825 — 2]25) ® T2 ® v,
=10z ®v +1Rx2 ®v2,
(w1 Awp)ly = (2820 — 272 @21 Ay @0y + (2325 — 2125) @ 21 A 20 @ vg,
(w1 A wp)ly = (zixg —2223) @2y Ay @y + (2322 — 2173) @21 ATy @ vy
Here, S¢ = F3[f1, fo] for fi = 2§ + 2123 + 2223 + 285 and fo = 2923 + 212 + 23§,
APPENDIX A.

The technical analysis in this appendix provides the heavy lifting for determining the Saito
criterion for invariant differential derivations in Section 3. Throughout this section, we fix a
nontrivial finite group G C GL(V') acting on V' = F" that fixes a single hyperplane H = ker ¢
in V for some linear form ¢ in V*. We fix e = ey > 1 and b = by > 0 throughout and use the
basis vy, ...,v, of V with dual basis z1,...,z, of V* as in Eq. (2.2), as well as the (possibly
empty) set of transvections t1,...,%, in G and an element s in G with either s = 15 when
e =1 or s is a diagonalizable reflection of maximal order e > 1 in G.
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Action on basis elements. We record the action of s and each transvection t,, on basis
elements v; of V and z; of AV*. For a fixed m and I = {i1,...,it} C {1,...,n} with
ih<...<ig,n¢ I, and m € I, define 7, = £1 by

To() = ELm To(iy) N\ " N Tg(;,)  for the transposition o = (mn).
Also, set A = det(s). Then for 1 < m < b,

b (1) xr whenn €l orm ¢ I, b () v; when j #n,
m\Z1) = m\Vj) = .
! T —€1mTo(ry Whenn ¢l andmel, / Um + v, when j =n,

h I i hen j
s(ar) = x;l when n ¢ I, and s(v;) — vj wen].;«én,
ATy when n € I, AU, when j =n.

Note that €7, = 1 and t,,(z7) = @y — x, when I = {m}.
Action on polynomials. We require some straightforward observations.

Lemma A.1. For any reflection g about H = ker{ and any polynomial f in S, ¢ divides
g(f) — f. Also, ¢? divides g(f) — f whenever £ divides f.

Lemma A.2. Let det(s) = X of order e > 1. Then for any polynomial f,
(a) s(f) = \f implies £¢7 divides f,

(b) s(f) = f and ¢ divides f implies ¢ divides f,

(c) s(f) =A"'f and X\ # 1 implies ¢ divides f, and

(d) s(f) = A"Lf and €% divides f implies (61 divides f.

Proof. We prove part (a); the rest follows from similar arguments. Since s(z,) = A~'z,, and
s fixes x1,...,2,—1 as well as xf,, the degree in z,, of each monomial appearing in f must be
—1 mod e, and thus £¢~! = 2¢~! divides each monomial. O

Lemma A.3. Say 1 < m < b. If a monomial M = x{*--- 20" 'z, appears in ty(f) — f
with nonzero coefficient ¢, then apy, +1 # 0 in F and Mz, /z, appears in f with nonzero
coefficient —(a, + 1) te.

Proof. For any monomial z{* - -z,

an
n

an

aAm—1_.am—1,.0m+1 :L'a"+1
n n

— a1
= —amTy Tyt + other terms.

The claim then follows from the observation that this expression is zero for a,, = 0, and
otherwise all monomials appearing in this expression have degree in x,, strictly greater than

an, degree in x,, strictly less than a,,, and unchanged degrees in the other variables. ([l

Main lemma. At last, the following lemma analyzes the polynomial coefficients of an in-
variant differential derivation. Recall that [b] = {1,...,b}.

Lemma A.4. For any differential derivation n = Z frij®xr®uvj in (S APV ®V)G,
re(M),1<5<n
a) ¢ divides fr, whenn ¢ I,
b) £¢ divides fr, whenn € I and I N[b] # @,
¢) 671 divides frj for j <n whenn €I,
d) (¢ divides frj for j <n whenn &I and I N[b] # & and I N[b] # {j},
e) £ divides frj — ermfo(ryn for j =m <bwhenn ¢ I and IN[b] = {m} , and
f) ¢l divides fr,, when n ¢ I and I N [b] # @, unless G consists of exactly one
transvection and the identity element.
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Proof. We take all sums over subsets I € ([Z]) and 1 < j < n as indicated.

Action of transvections. Consider the transvection t¢,, for m € [b] when b > 0 and set
o= (mmn)and e =€ p:

tm(n) = ztm(fl,j) ® b (@1) ® tim (v;)

1,5
= Z tm(f1,;) @ xr ®v; + Z tm(frn) @ 21 ® (U + vp)
1,5: I:
nel orijI, nel or mg¢l
#n
+ Z m(f15) ® (21 — e175(1)) @ V5 + Z m(f1,n) @ (21 — €1%6(1)) @ (Vm + V) .
I:
n&] mEI n¢l, mel
Jj#n

We reindex and regroup to express t,,(n) as

Z tm(fI,j) KrrQu; + Z (tm(fl,m) +tm(fl,n)) QT v,

I,j5: I:
n¢l or mel, n¢l or mel
J#m
+ Z (tm(f1.5) = €o(tm (fo(r),j)) ® 1 @ v;
nEI m¢[
J#m
+ Z f] m +t (f],n) - 8U(I)tm.(fa([),m) - ea(l)tm(fa(l),n)) QL & U -
nel, mil

We equate the polynomial coefficients of n and t,,(n) and deduce that

tm(f1,5) for j #m whenn ¢ I orm € I,

) ta(from) F i (f10) for j=m whenn¢I ormel,
fri= tm(f1.5) = €a(nytm (fo(D),5) for j #m whenn € I and m ¢ I,
tm (f1,m) + tm(f1,0) — €a()tm(fo(r),m) — €o(ntm(fo(ryn) for j =m whenn €I and m ¢ I.

We solve for t,,,(frj) one case at a time and conclude that

frj for j#m whenn¢ I ormel,

from — fin forj=mwhenné¢lI ormel,
(A5)  twlfry) = . i

J1.5+ €y o). for j #m whenn €l and m ¢ I,

Jrm = frn + o) for),m — o) fo(n,n  for j=m whenn € I and m ¢ I.

Action of diagonalizable reflection. Since s is diagonal with det(s) = A of order e > 1,

sm) = _s(fr) @s(@) @s(v) = Y s(fr;)@er@v; + Y As(frn) @21 @ v,

1,5 ,J n¢1 I:ngI

+ Z AT f[,_y ®$I®U_7 + Z f[n R rr & vp.
I,j:nel I'nel
J#n
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We equate the polynomial coefficients of n and s(n) to see that

frj for j #n whenn ¢ I,
AN frn forj=mnwhenn¢l,
Afr; for j # n when n € I,
fin for j =n whenn € I.

(A.6) s(f15) =

Now we use equations Eq. (A.5) and Eq. (A.6) to show £ to certain powers divides various
f1; using the fact that G contains either a diagonalizable reflection or a transvection.

Parts a) through e). For a), fix I with n ¢ I. As G is nontrivial, either G contains a
transvection t,, or s # lg. If G contains t,,, then fr,, = fr.;m — tm(fr,m) by Eq. (A.5) so is
divisible by £ by Lemma A.1. If s # 1g, then s(fr,) = A~ f1, for X # 1 by Eq. (A.6), so
¢ divides fr, by Lemma A.2(c). Either way, ¢ divides fr,. The proof of parts b), c), and
d) are similar. For part e), fix j = m < b and I with n ¢ I and I N[b] = {m}. Then for
o= (mmn)and e; =eqm,

tm(fa([),j) - fa([),j - fo'(I),n + ‘C:IfI,j - EIfI,n
by Eq. (A.5). Since ¢ divides t,,(fo(1),;) — fo(r),; by Lemma A.1 and also f;,, by part a), it
must divide — fo (1), +€1f1,; and hence also f1 j —erf,(1),n- Further, £¢ divides f1;—e1fo)n
by Lemma A.2(b) since it is fixed by s (see Eq. (A.6)) and part e) follows.

Part f). Complications arise when char[F = 2. For part f), assume G does not consist of
exactly one transvection and the identity, and fix I with n ¢ I and I N [b] # @. Then G
contains a transvection t,, for some m € I N [b] (so b # 0) and

1) charF # 2, or

2) e>1,or

3) b>1,or

4) charF =2, e =1, and b =1, but G contains multiple transvections.
In each case, we will show that 2 divides fr,. Then as s(frn) = A~'fr, by Eq. (A.6),
Lemma A.2(d) will imply that £¢™! divides fr, and the claim for part f) will follow. We fix
melNnbl,oc=(mn), and €1 = €1 m.

Case 1: charF # 2. Suppose that £ does not divide fr,. Notice ¢ divides f;, by part a)
so some monomial M of degree 1 in z, appears in f7, with nonzero coefficient ¢ € F. As

tm(frn) = frn by Eq. (A5),
fin € S = F[al, — xpal L xi i £ m]  for G = (ty)
(e.g., see [21]), and the degree of M in z,, is a multiple of p (as x,, divides f;,). By Eq. (A.5),
tm(f1m) = fim—fin and  tn(foym) = fo(ym +erfin,
s0 My, [z, appears in fr,, and f,(p), with nonzero coefficients ¢ and —e;¢, respectively, by
Lemma A.3. Thus £ = z,, does not divide —f,(1),, + €1fr,m (as charF # 2). But
tm(fo(r),m) = fo(tym — fo(tym + €1f1m —€r1f1n 5

and ¢ divides fr,, so £ must divide — fo (1), + €1f1,m by Lemma A.1 giving a contradiction.
Thus ¢2 divides frn-
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Case 2: e > 1. Here, s(f,(1),m) = AMo(1),m by Eq. (A.6) so £ divides fo(r) m by Lemma A.2(a).
Also, by Eq. (A.5),

t(fo(rym) = fo(tym = fo(tyn +e1f1m — €1f105
so £? divides ~fo(n)n + €1f1,m — €1f1,n by Lemma A.1. Recall again that ¢ divides f7, by
part a) so £ also divides —f,(1)n + €1 f1,m- Further, s fixes —f, (1) n + €rf1m (see Eq. (A.6))

so £2 divides —fo();n T €1f1,m by Lemma A.2(b) as e > 1. Therefore 2 divides f;,. Finally,
$(frn) = A" f1n, so €671 divides fr, by Lemma A.2(d).

Case 3: b > 1. First, if I N [b] # {m}, then ¢ divides fr,, by part d). Then by Eq. (A.5),
frm = frm — tm(frm) , so 22 divides frn by Lemma A.1. Otherwise, if I N [b] = {m}, take
m' € [b] with m # m/, so m' ¢ I. Then by Eq. (A.5), tu(fo(r)m) = fo(r)ym + €1frm, 50 £
divides f[’m/ and 62 divides f[7n = fI,m’ — tm/(f]’m/) by Lemma A.1.

Case 4: char F=2,e=1,b =1, G contains multiple transvections. In this case,
(o)

m = 1 and G contains the transvection ¢; as well as a transvection ¢;
for some « € F that is not 0 or 1:

1 1 1 «
1 1

Then since charF = 2, for o = (1 n),

t(a)( ) Xy whennel orlé¢l,
€T =
! rr+ax,y whenn¢landlel,

with root vector awv;

and

o v when j # n,
157 (vy) —{ ’

N avi +v, when j=n.
Taking sums over subsets I € ([Z]) and 1 < j < n, we observe after some computation that

t§a)(77) = Z tga)(fl,j) ®rrQv; + Z (t(la)(fl,l) + Oét(la)(fl,n)) ®xr® v

I7j: I:
n¢l or 1€1, ngI or 1€1
1
+ Z a) (f1.45) +at1 (fa(l i) @z @ v;
nEI 1¢1
J#1
+ Z )+ ati® (frn) + at (foryn) + P8 (foyn)) @ 21 @ 01 -
nEI 1§EI

We equate polynomial coefficients of n and tga)(n) to deduce that

fr.; forj£1whenné¢l orlel,
(A7) £ (fy ) = fra+afra forj=1whenn¢ I orlel,
. Lo frj+afen); for j#A1 whenneland1¢ I,

Jra+afrn+afsna +a2fg(]),n forj=1whennelandl¢]l.

Suppose by way of contradiction that £2 does not divide f7,. Recall again that ¢ divides fr,
by part a) so some monomial M of degree 1 in x, appears in fr, with nonzero coefficient

c€F. As ti(frn) = fr.n by Eq. (A5),
fin € SY =Fla? + aqay, 200 #1] for G = (t1)

(see [21]), and thus the degree of M in z; is even (as z, divides fr,).
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We analyze the coefficients of M and Mx1/x, in f11, fr.n, fo(n),1, and fo(r),,- Note that
frn=0-Mz/x, + c- M + other terms.

Next, t1(fr1) = fr1 + frn and t1(fo(n)n) = fo(r)n + fr.n by Eq. (A.5), so the coefficients of
Mz )z, in f11 and f,(g), are both equal to ¢ by Lemma A.3. Fix ¢/, ¢” € F with

fri=c¢-Mxy/x, + - M + other terms, fy1), = ¢- Mxy/x, + " - M + other terms.
Now we examine f, (7). On one hand, by Eq. (A.5) and Eq. (A.7),
t1(fon) + fonn = foym + fra+ fin =0 May /2, + (c+ ¢ 4 ") - M + other terms and
tga)(fU(I),l) + fon1 = afonyn T afr1+ A2 frn=0-Mzy/z, + (@®c+ ac + ac’)M + other terms.

Let C be the coefficient of Mx1/x, in fo1)1.- Then, on the other hand, since Mz /x, has
odd degree in x1,

tl(fo—(]),l) + fo(n, = C - M + other terms, tﬁ‘“)(f,,(l)vl) + fo(n),1 = aC - M + other terms,

s0o C =c+c + " and aC = a’c+ ac + ac”’, which implies that ¢ = 0 (as a # 0, 1), giving
a contradiction. So ¢? divides fr.n- This completes part f) and the proof of the lemma. O

The next lemma, is used to establish Lemma 3.7. We set § = dy, which records when G
comprises only one transvection and the identity (see Eq. (3.3)).

Lemma A.8. For any set B of n(}) elements in (S @ A\*V* @ V)Y, the determinant of
Coef(B) is divisible by £ to the power

(%) + e = D= 1)) + (= ((F) = ) + (D) - ()
Proof. The claim follows immediately from Lemma A.4:

e ( divides each column in a set A of (";1) columns,
n—1 n—b—1
k—l) o ( k-1

e (*! divides each column in a set C of (n — 1)(}_]) columns,

e (¢ divides each column in a set D of (n — 1)(”;1) —(n— 1)(”_2_1) - b(";ﬁ;l) columns,
n—b—1

e (¢ divides each column in a set F of b( b1 ) columns after some column operations, and
o (¢(1-9)+1 Jivides each column in a set F of (";1) - (”7271) columns,

where the sets A, B, C', D, E are pairwise distinct and F' C A. Hence, det Coef(B) is divisible
by £ to the power |A| + (e — 1)|C| + e(|B| + |D| + |E| + (1 — §)|F]). O

e (¢ divides each column in a set B of ( ) columns,
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