GENERALIZED EXPONENTS AND FORMS

ANNE V. SHEPLER

ABSTRACT. We consider generalized exponents of a finite reflection group act-
ing on areal or complex vector space V. These integers are the degrees in which
an irreducible representation of the group occurs in the coinvariant algebra.
A basis for each isotypic component arises in a natural way from a basis of
invariant generalized forms. We investigate twisted reflection representations
(V' tensor a linear character) using the theory of semi-invariant differential
forms. Springer’s theory of regular numbers gives a formula when the group is
generated by dim V reflections. Although our arguments are case-free, we also
include explicit data and give a method (using differential operators) for com-
puting semi-invariants and basic derivations. The data give bases for certain
isotypic components of the coinvariant algebra.

1. INTRODUCTION

Real and complex finite reflection groups exhibit fascinating numerology. The
exponents and coexponents of the group arise in numerous ways, for example, as
the degrees of the reflection representation and its dual in the coinvariant algebra
and also as the degrees of generating invariant differential forms and derivations.
We investigate the numerology of twisted reflection representations here.

Let V := C* and recall that a reflection is an element of GL(V') whose fixed point
set is a hyperplane in V. Let G be a reflection group, i.e., a finite subgroup of GL(V)
generated by reflections. Such groups are often called pseudo-reflection groups and
include the Weyl and Coxeter groups. (See Orlik and Terao [12], Kane [5], or
Smith [15] for basic notions.) We assume all G-modules are CG-modules. For any
G-module U and irreducible G-module M, let UM be the isotypic component of
U of type M, i.e., the direct sum of those G-submodules of U isomorphic to M.
Let U9 := {u € U : gu = ufor all g € G} denote the set of G-invariants. For
any linear character x : G — C*, let C,, be a one-dimensional G-module affording
x and let UX := U% = {u € U : gu = x(g)u for all g € G} be the set of x-
invariants in U. The reflection group G acts contragradiently on V* and thus on
the symmetric algebra S := S(V*), which we identify with the algebra of polynomial
functions on V. The algebra S is naturally graded by polynomial degree. Let I C .S
be the Hilbert ideal generated by the invariant polynomials of positive degree.
Chevalley [4] and Shephard and Todd [13] show that S¢ = C[fy,..., f¢] for some
homogeneous polynomials fi, ..., f¢ called basic invariants. The algebra S/I is
called the coinvariant algebra. Chevalley also proved that S/I is isomorphic to
the regular representation and that S ~ S¢ ® S/I as G-modules.

The coinvariant algebra S/I inherits the grading on S. For any irreducible
G-module M, the isotypic component (S/I1)™ decomposes as M; & My @ -+ @
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Mgim v for some homogeneous subspaces M; ~ M of degree ¢;(M). We call
e1(M), ea(M), ..., eqim m(M) the M-exponents. For any linear character x of
G, the x-exponent is the C,-exponent, denoted e(x). Let mq,...,m¢ be the V-
exponents, called the exponents of the group, and assume that m; < ... < my.
Similarly, let m7,...,m; be the V*-exponents, called the coexponents of the
group, and assume that mj > ... > mj. The exponents and coexponents of the
group indicate the invariant theory of differential forms and derivations (see Sec-
tion 3). The coexponents also express the cohomology of the complement of the
hyperplane arrangement (see Orlik and Solomon [11, Cor. 6.62]).

Springer [18] studies generalized exponents, and Stembridge [22] gives a combi-
natorial interpretation for the infinite family G(r,p,#) and other wreath products.
The associated generating function is called the “fake degree” (see Broué, Malle,
Michel [3], for example). Ariki, Terasoma, and Yamada [1] give a basis for the
coinvariant algebra for the monomial groups G(r,1,¢) consisting of higher Specht
polynomials associated to Young diagrams. Morita and Yamada [9] develop a theory
of higher Specht polynomials for the groups G(r,p,f). The exceptional reflection
groups do not lend themselves to the same kind of combinatorial analysis.

We relate the isotypic component (S/I)™ with the space S ® M*. The reflection
group G acts naturally on S ® M* and the rank of (S ® M*)¢ as an S%-module is
dim¢ M (see [17, Lemma 2]). The module S @ M* also inherits a grading from S:
let q1,...,q, be a fixed basis of M* and suppose w = >, w; ® ¢; € S ® M*; if the
polynomial coefficients w; are all homogeneous of degree p in S, then we say that
w is homogeneous of polynomial degree p.

In Section 2, we remark that the polynomial coefficients of any S@-basis of
(S ® M*)E form a linear basis of the isotypic component (S/1)™. Thus, the M-
exponents are just the degrees of a homogeneous basis of (S @ M*)& over S€.
We begin our investigation of twisted reflection representations in Section 3 with
some background and results on semi-invariant differential forms. In Section 4,
we use information about semi-invariant polynomials, forms, and derivations to
describe generalized exponents for xV := V ® C,,, where x is a linear character
of G. The main result of this section is Corollary 13 relating x, X, xV, and
xV*-exponents. We apply Springer’s Theory of regular numbers in Section 4 to
reflection groups generated by dim V reflections. In Section 5, we discuss a method
for computing derivations and semi-invariants. Computational results are given in
tables at the end, although previous results are obtained case-free. We include the
explicit xyV-exponents for all of the linear characters x and exceptional irreducible
reflection groups. Previous research has centered on Coxeter groups and the infinite
family G(r,p,£). We hope the approach here will be helpful in understanding the
coinvariant algebra of exceptional reflection groups.

2. BASES FOR ISOTYPIC COMPONENTS OF THE COINVARIANT ALGEBRA

Suppose M is an irreducible representation of the reflection group G. Solomon [17,
Lemma 2] shows that the M-exponents are the degrees of a homogeneous basis of
(S ® M*)% over SY. We point out a slightly stronger result:

Proposition 1. Let M be an irreducible G-module. Then a natural G-isomorphism

M@ (S M)% ~ §¢(s/1)M
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provides an injective map
S bases of (S® M*)® — C-bases of (S/T)M :

The polynomial coefficients of an S€-basis of (S @ M*)% form a C-basis of (S/I)™
modulo I. Hence, the M -exponents are the degrees of a homogeneous basis of (S ®
M*)E over SC.
Proof: Note that (S @ M*)¢ ~ (S¢ ® S/I @ M*)¢ ~ SY @ (S/I ® M*)¢ by
Chevalley’s Theorem and (S/I ® M*)¢ ~ Homg (M, S/I) ~ Homg (M, (S/I)M).
But M ® Homg (M, (S/I)M) ~ (S/I)M as M is irreducible. Suppose wi, ...,w,
form an S%-basis for (S ® M*)“ and write each wy as wy = > »Sjk ® my for
some fixed basis my,..., m, of M*. Then under a composition

M®(SeM)Y ~ S%®(S/HM — (S/NHM
(where a® (b4 I) — ab+I),

{mj@uwp:1<k,j<r} — {sp+I1:1<k,j<r}

G=1,...

One may verify that this last set spans (S/1)™ over C and thus forms a basis. [

3. TWISTED REFLECTION REPRESENTATIONS AND DIFFERENTIAL FORMS

We consider twisted reflection representations of the group G and relate compo-
nents of the coinvariant algebra to differential forms. Identify Q7 := S@ A” V* with
the space of differential p-forms on V' and set Q := 69:;:0 OP. Let d: QP — Qptl
be the usual exterior derivative and let vol be the volume form on V (defined up
to a nonzero scalar). Note that dz = 1 ® x under the identification Q° = S for any
x in V*.

Semi-invariant differential forms are related to certain isotypic components of
the coinvariant algebra. Consider a linear character of the reflection group, x :
G — C*. We call xV :=V®@C, (or xV* := V*® C,) a twisted reflection
representation. If G is irreducible, the last proposition implies that an S¢-basis
of (MY ~ (S®V*®Cx)Y yields a linear basis for the isotypic component of
the coinvariant algebra whose type is xV.

We recall some facts about invariant differential forms and derivations. Let
f1,..., fe be a set of basic invariants. The exterior derivative d commutes with
the group action on € and dfy, ..., dfy are invariant 1-forms. These forms generate
(S ®V*)Y as a free S9-module. The exponents of the group are thus the integers
my =deg f1—1,...,my = deg fy—1. Similarly, we regard S®V as the S-module of
derivations (or vector fields) on V. Generators of (S® V)% over S are called basic
derivations (see [12, Def. 6.50]). The (polynomial) degrees of a set of homogeneous
basic derivations are the coexponents of the group.

Solomon [16] shows that dfi, ..., dfs generate the S¢-module of invariant differ-
ent forms as an exterior algebra: for each p,

@)% = @ SOdfi, Ao ndfi,
i1 <<y

and thus Q¢ = Age (21)¢. We recall a related result for QX, the S¢-module of
x-invariant forms. The space of y-invariant polynomials, SX, has rank 1 as an
S%module. Let @, € S be a (homogeneous) generator:

Sx = @, SY.
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(Note that @, is only defined up to a nonzero scalar.) The degree of @, is the
X-exponent, e, (see Lemma 5). The polynomial @), divides the exterior product of
any two x-invariant forms (see Shepler [14]) and we define a multiplication on QX
called xy-wedging;:

wAn
(1) wAn = .
Qx
Define A’;G M = Q};” ’;G M for any S¢-module M of y-invariant forms; then
x-wedging endows A ge M = 69:;:0 APSG M with the structure of an exterior

algebra. Let det : G — C* be the determinant character of G on V. We recall a
criterion from Shepler [14] for a set of forms to generate QX as an algebra:

Theorem 2. Let x be a linear character of G and let wy,...,ws be homogeneous
x-tnvariant 1-forms. Then the following are equivalent:

(1) Up to a nonzero scalar, wi A--- Awg = @Qydet vOL
(2) The forms w; generate QX:
QP)x = @ SGwilk---Awip forp=1,... L
i1<...<ip

Furthermore, there exist forms satisfying (1) and (2), and QX is an exterior algebra:
O = Age (@YX

We say that wi,...,w, generate QX if they generate QX as an S¢-module via
x-wedging in the sense of Theorem 2. We assume such generators are homogeneous.
Although the w; are not unique, their degrees are unique. Proposition 1 then implies

Corollary 3. Suppose that G is irreducible and x is a linear character of G. Let
w1, ...,we generate QX and write each wy as Zle w; dx;, where the x; form a
basis of V*. Then

{wie +1: i, k=1,...,¢}
is a C-basis for the isotypic component (S/1)XV. The degrees of a generating set of
QX are the xV -exponents.

Corollary 4. Let x be a linear character of G. Suppose generators of QX have
degrees e1,...,eq. Then a (homogeneous) basis of the S¢-module (S ® V)X has
degrees deg Qy det +degQy —e; fori=1,... L.

Proof: Let YP := S ® A’ V. The G-equivariant perfect pairing A\’ V ® /\Z_p V —
Cg5; gives a degree-preserving duality between semi-invariant differential forms
and vector field forms:

(Tp)xdet ~ (Qé—p)x
as S%modules. Hence, by Theorem 2, (S @ V)xdet = (Tl)xdet ~ (Qf-1)x =

Aé_l(Ql)X. Theorem 2 also implies that e; + ...+ e, = (¢ — 1) deg Q + deg Qy det-
Hence, generators of (S ® V)X4¢ have degrees

(2—-0)degQy+(e1+...+6 +...+er) =degQy + deg Qy det — €;
fori=1,... 4 O
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4. EXPONENTS OF TWISTED REFLECTION REPRESENTATIONS

We collect some observations about x-invariant forms, where x is any linear
character of the reflection group G. These observations in turn provide various
combinatorial relations among y-exponents and xV-exponents. The main result of
this section is Corollary 13.

Let A denote the collection of reflecting hyperplanes in V' for the group G. For
each hyperplane H in A, let sy be a reflection of maximal order fixing H pointwise.
Let { in V* be a linear form with H = kerlg. Stanley [19] gives a formula for Q,:

(2) Qv = I ur™,
HeA
where ap(x) is the unique integer satisfying 0 < ag(x) < order(sy) and x(sg) =
det(g)~2# (), Define
Q= Qe = [] =
HeA
the polynomial which defines the hyperplane arrangement A. Steinberg [20] gave a
proof that the determinant of the Jacobian derivative of a set of basic invariants is
Qdet up to a nonzero scalar. The image of this Jacobian determinant is nonzero in
the coinvariant algebra (for example, see [10, Lemma 6] or [15, Cor. 6.5.2]). Hence
e(det) = deg @, the number of reflecting hyperplanes. Similarly, e(det) = deg Qget,
the number of reflections in G. In fact, since each @, divides Qget, we have the
following well-known generalization:

Lemma 5. For any linear character x of G, the image of the polynomial Q is
nonzero in the coinvariant algebra and the x-exponent is e(x) = deg Qy.

The next lemma follows directly from Stanley’s formula. The lemma after gives
generators of QX in terms of generators of QX. Corollary 8 is a result of Terao [23]
(see [12, 6.61]). Proposition 9 relates the xV-exponents to the exponents m; and
the coexponents m; of the reflection group G.

Lemma 6. Let x be a linear character of G. Up to a complex scalar,

QX Qidet = Qdet~

Lemma 7. Let x be a linear character of G. Suppose wq, . ..,ws generate QX and
let n; == (Qx/Qy) wi- Then n1,...,ne generate QX.

Proof: We first observe that @), divides each Q% wy. Choose H in A with a :=
ag(x) # 0. Fix a basis 1,...,2s of V* so that Iy = x; and the matrix of the
reflection sy is diagonal. Let w be some generator wy = >, w;dx;. Since w is
invariant, 2¢ divides w; whenever i # 1 and 2§~ ' divides w;. Stanley’s formula
for @, (Equation 2) implies that x; divides Q% , and hence % divides Qyw. As
H was arbitrary, @)y divides Qyw, and each n; is X -invariant. By Lemma 6 and
Theorem 2,

mA- A =Q% QyF win-Aw = Q% Qf Q4! Qyuder vol
= Q5" Q)" Quet vol = Q%" Qx.det vol
up to a nonzero scalar. Hence, by Theorem 2, 711, ..., 7, generate QX . O

Corollary 8. Generators of Q% have degrees deg Qaey — m} for 1 <i < (. Gen-
erators of Q4 have degrees deg Qe —mj for 1 <i < /L.
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Proof: Apply Corollary 4 to the case x = det™! = det and recall that invariant
derivations have degrees mj,...,m;. Lemma 7 then implies the first claim. O

Proposition 9. Let x be a linear character of G and let wy,...,wy generate QX
with degw; < degw;+1. Then for each 1,

degQy —m; < degw; < deg @, +m;.

Proof: If fi,..., f¢ are basic invariants, then the forms Q,dfi, ..., Qydf; are inde-
pendent over S¢, and hence degw; < deg Qy + m; for each i. Let p1,..., 1 be
generators of Q9 with degpr = deg Qaer — mj, (using Corollary 8). Note that
Qx-det W1, -+ -, Qx.det we are det-invariant forms independent over SC and hence
(by Lemma 6)

deg Qget — mf = degp; < degQx.detw; = degQqet — deg Qy + degw;.
O

Proposition 10. Let x # 1 be a linear character of G. Suppose wy, ...,wy generate
QX. Then degw; = deg @, — 1 for some 1.

Proof: Since the 1-form dQ, is x-invariant, dQ, = )", hw; for some homogeneous
polynomials h; in S¢. Suppose none of the h; lie in C*. Fix a basis x1,...,z¢
of V*. Then each 0/0x;(Qy) lies in I. By Euler’s formula, (deg@y) Q5 =
(degQy) >, i %(Qx) also lies in I, contradicting Lemma 5. Hence, some h; is
a nonzero scalar, and thus {w1, ..., wi—1,dQy,wit1,...,we} also generates OX. O

We say that the character x is wholly non-trivial (borrowing terminology
from Victor Reiner) when x(sg) # 1 for each H in A. Thus x is wholly non-trivial
exactly when @ divides Q.. Stanley’s formula (Equation 2) for @, directly implies

Lemma 11. Let x be a linear character of G. Then x is wholly nontrivial if and
only if (up to a nonzero scalar)

Qxdet QY det — Qdet2~

Proposition 12. Let x be a linear character of G. Then x is wholly nontrivial if
and only if generators of QX have degrees deg Qy—m; fori =1,...,{. Furthermore,
X s trivial if and only if generators of QX have degrees deg Q, +m; fori=1,...,¢.

Proof: Recall that generators of Q9 have degrees deg Qaer — m} for i = 1,...,¢
(Corollary 8). Let wy,...,wp generate QX with degw; < degw;+1. Then

WA Awp = Qf(_l Ry det VOl
by Theorem 2, and hence
QY det Wi A -+ A QY det W = QY det Qflgtl Qxdet vol

by Lemma 6. On the other hand, the S“-module of det-invariant ¢-forms is gener-
ated by Q4e¢2 vol, and thus

Qxdetwi A ANQx detwr = f ﬁ;} Qget2 vol

for some f in S¢ (see Equation 1). Hence, Qx5 det Qydet = f Qqet2- But x is wholly
nontrivial exactly when f is a nonzero constant (by Lemma 11), exactly when the
Qx det Wi generate Qdet (by Theorem 2), exactly when the degree of each Q5 det w;
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is deg Qaet — M, and thus exactly when the degree of each w; is deg Q, — m} (by
Lemma 6). Also note that if each degw; = deg @, + m;, then

deng(_l—i—degQXdet = deg wi A+ Awyg
= degQ% +mi+...+my = degQ’, + deg Quet,

and deg Qy det = deg Qy + deg Qe But Stanley’s formula for @, (Equation 2)
implies that deg Qy det < deg @y + deg Qqet unless x is trivial. Conversely, if x is
trivial, then @y = 1 and we may take w; := df;. O

We obtain some combinatorial identities by applying Lemmas 5 and 6 and Corol-
lary 3 to Theorem 2, Propositions 9, 10, and 12, Lemma 7, and Corollary 4. Note
that the coexponents are m; = e;_;(V*) in the corollary below, and recall that
e(det) is the number of reflections in G.

Corollary 13. Assume G is irreducible. For any irreducible G-module M, label
the M-exponents in increasing order: e;r(M) < ... < eqimm(M). Let x be any
linear character of G. Then:

(a) e(xdet) =e(det) —e(x)-

(b) er(xV)+...+e(xV) = —1)e(x) + e(x det).

(c) e(x) —e—i(V*) <ei(xV) <elx) +e(V) fori=1,....¢

(d) if x # 1, then some e;(xV) = e(x) — 1.

(e) x is wholly nontrivial if and only if e;(xXV') = e(x) — ee—i(V*) fori=1,...,¢.
(f) x is trivial if and only if e;(xV) =e(x) +ei(V) fori=1,... ¢

(9) ei(XV) = e(X) - e(x) + ei(xV) for i=1,...,1.

(h) e (xV*) =e(det) —e;(x detV) fori=1,...,¢.

5. SPRINGER'S THEORY OF REGULAR ELEMENTS

The invariant theory of reflection groups generated by £ = dim V' reflections is
particularly appealing. We recall Springer’s theory of regular elements. A vector
v in V is regular if its isotropy group in G is trivial. Steinberg [21, Theorem
1.5] shows that v is regular if and only if v does not lie on any of the reflecting
hyperplanes for G. When ¢ in G has a regular eigenvector, then ¢ is a regular
element and the order of g is a regular number for G. Springer [18, Prop. 4.5]
shows

27

Theorem 14. Let g be a reqular element of G with order d. Let £ =ea . Let M
be any irreducible representation of G. Then the eigenvalues of the action of g on
M are ¢, ..., %esM qwhere e1,...,€deg M are the M-exponents.

Corollary 15. Let G be an irreducible reflection group and let x be a linear char-
acter of G. Let d be a regular number for G. The exponents of the twisted reflection
representation xV are deg Qy + mq,deg Qy + ma, ..., deg Qy + my modulo d.

2mi

Proof: Suppose £ = e”@ where d is the order of a regular element g. By Lemma 5,
e(x) = deg @Qy. Apply Theorem 14 to M = C,, M =V, and M = xV: x(g) =
£~ 4e8Qx and the eigenvalues of g on V are £™; hence the eigenvalues of g on YV
are x ()€™ = ¢mimdee@x for j =1,... 4. O

If if d is regular, then by Corollary 15, there is a permutation 7 of 1,...,¢ such

that the exponents and coexponents of G satisfy m; + m;"r( H=0 modulo d (also see
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[8, Cor. 4.6]). Set d¢ := my + 1. The group G is a duality group if dp = m; +m}
for each i. Examples include Coxeter groups and Shephard groups. Theorem 16
below implies that if G is a duality group, then d; is a regular number. The converse
is false, e.g., dy is regular for the group Gs1, but Gs; is not a duality group.

Orlik and Solomon [11, Theorem 5.5] observe (among other equivalences) that G
is a duality group if and only if G can be generated by ¢ = dim V reflections. They
examine the irreducible groups case-by-case. Bessis [2] gives a proof of this result
which avoids case-by-case analysis using an observation by Lehrer and Springer [8].
Lehrer and Michel [7] give a case-free proof of this observation, which is the next
theorem. The degrees of G are the degrees of the basic invariants m; + 1 for
i =1,...L. The codegrees of G are the integers m; — 1 fori=1,...¢.

Theorem 16. An integer d is a reqular number for G if and only if d divides as
many degrees as codegrees.

The following result is false for many non-duality groups.

Corollary 17. Let G be a duality group and let x be a linear character of G. Let
er(xV) < ... < ei(xV) be the XV -exponents. Then each e;(xV) is e(x) + m; or
e(x) —ms fori=1,...,¢.

Proof: Since G is a duality group, dy is a regular number by Theorem 16 and
ei(xV) = deg @y +m; = deg Q,, — m} modulo d; by Corollary 15. The result then
follows from Proposition 9 (see Corollary 13c). O

6. CONSTRUCTING SEMI-INVARIANT FORMS

We show how to construct generators for semi-invariant forms using differential
operators. (This method produces an explicit C-basis for the isotypic component
of the coinvariant algebra whose type is any twisted reflection representation.) We
list the explicit yV-exponents and y-invariant forms for the irreducible reflection
groups (except the infinite family) in tables at the end.

We may assume that the reflection group G preserves a Hermitian inner product,
V x V — C. The inner product induces a natural map from S(V) to S = S(V*),
say p — Op. Identify S(V) with the algebra of differential operators to obtain a
map

SxS — 8

(., f) — (@p)f
(where (9p)f is the result of applying the differential operator dp to f). This map
preserves the group action: (gdp)(gf) = g(dp(f)) for every g in G and polynomials
p, f in S. This implies that the induced “star and bar” map from the product
space of derivations and polynomials to the space of differential forms preserves
semi-invariance:

Proposition 18. Let x and T be linear characters of G. The natural map
(SeV)xsS — (SeVY)
given by (p®@v,f) = (9p)f®0v
induces a map (S®@V) x SX — (S@V*)XT,
Denote the image of a derivation 6 and a polynomial f € S under this map by ] f(a

differential form). Let @f (a derivation) denote the image of a differential form w
and a polynomial f € S under the analogous map (S ® V*)™ x SX — (S@V)XT.
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Corollary 19. If f; and f; are basic invariants, then cfiﬁ fj is an invariant deriva-
tion. If 0 is a basic derivation, then 0Qy is a x-invariant 1-form.

We use the above corollary to construct basic derivations and generators for
OX. These techniques are suggested by the numerology of Corollaries 13 and
17. Shephard and Todd [13] classify the irreducible reflection groups into an
infinite family G(r,p,f) and thirty-three exceptional groups labeled G4 through
Gs7. Let 61,...,0; be a set of basic derivations with deg; > deg#;;1. Let
f1,---, fe be a set of basic invariants with deg f; < deg f;+1. When G is a du-
ality group, deg(&ﬁfg) = deg fy — degdf; = deg6;. Hence, &flfg, ce cfiﬁfg form a
set of invariant derivations with the same (polynomial) degrees as 61,...,6,. Do
they form a set of basic derivations? Similarly, does the set of y-invariant forms
{61Qy; - - -, 0eQy, Qxdf1, . .., Qydfe} include generators of QX7 Corollary 17 sug-
gests that a generating set of QX may be chosen from this set when G is a duality
group. We verify this suggestion in the observation below using basic invariants
from Shephard and Todd [13]. The observation after suggests a pattern for nondu-
ality groups as well. Both observations seem likely for the family G(r, p, ¢) although
we have not checked details.

Observation 20. Let G be an irreducible duality group, G # G(r,p,£). The basic
invariants, fi,...,fe, may be chosen so that {df1 fe,...,dfefe} is a set of basic
derivations. Let 0; := df; f¢ and let x be a linear character of G. A generating set

of QX may be chosen from {51QX, ce, GTZQX, Qxdfi, ..., Qydfe}.

Observation 21. Let G be an irreducible reflection group, G # G(r,p,£), and let x
be a linear character of G. There are basic invariants f; and invariant polynomials
F; so that {df1F1,...,dfeFe} is a set of basic derivations.

We give the explicit x and xV-exponents and some illustrative examples in tables
below. Klein’s invariants [6] appear in Table 1. Table 2 gives basic derivations in
terms of differential operators for the exceptional groups. (The Coxeter groups are
omitted since the coefficients of each 6; are just the coefficients of df,_;.) Tables
3 and 4 list the exceptional groups and give the polynomial @,, its degree (the
x-exponent e()), and generators of QX and their degrees (the xV-exponents) for
each linear character x of G. We omit those duality groups whose only linear char-
acters are det and the trivial character, since these two cases are well understood.
The symbol » indicates a nonduality group throughout. The yV-exponents were
first computed from character tables using a version of Molien’s theorem and the
software GAP and Mathematica. It may be interesting to note that for a fixed
two-dimensional exceptional group, one may compute all the semi-invariant forms
and derivations from just one polynomial.

Acknowledgments. The author thanks Gus Lehrer for pointing out a shorter
version of the proof of Proposition 1 and Hiroaki Terao for helpful discussions.
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TABLE 1. Klein’s Invariants for 2-dim. Groups

P = m‘f+2i\/§m%m§+m§
v = 17‘11 — 22\/§mfz§ —+ a:‘zl
t= 17112(93411 793421)
= of + 142}2d + 2§
= m%2 . 3393?9:% . 331%13 + mé2
f= .7)1.7,‘2(.7)%0 + llmi’mg — méa)

230 — 22821%23 + 494230230 4 22829235 4 220

230 + 52223525 — 10005230230 — 10005210230 — 52225 23° + 230

TABLE 2. Basic Invariants and Basic Derivations

Group | Basic Inv. Basic Der. Group | Basic Inv. Basic Der.
f1 f2 01 02 f1 fa 01 02

4 P ¢ afifa  df2fa 16 H T | dfifz df2fa

5 B dfy f2 df fa 17 H T2 | dfifs df2f2

6 2 @ df1 f2 dfa f2 18 T H® | dfifa  df2fa
> 7 o3 42 dafy 12 dfa fa »19 | H> T2 | dfif3 dfafe

8 w X df1 f2 dfa fo 20 f T df1fa  dfafa

9 w x? df1 fo dfa fa 21 f T2 dfif2  dfafo

10 X w3 df1 f2 dfa fo » 22 f H df1f3  df2f2
> 11 w3 x? df1 f2 dfa fo
> 12 t w dfy £3 dfa f2
> 13 [ dfy f2 dfz fo Group Basic Der. 6;

14 ¢ x? WFifs  dafa 24-27,29,32-24 | df1f, df2fe dfefe
> 15 2 X2 | A (fif2) dFafa »31 dfsf; dfifa  df2fs  dfafa
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TABLE 3. Semi-invariants and xV-Exponents.
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