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Abstract

Let X1, X2 . . . and B1, B2 . . . be mutually independent [0, 1]-valued random
variables, with EBj = β > 0 for all j. Let Yj = B1 · · ·Bj−1Xj for j ≥ 1. A com-
plete comparison is made between the optimal stopping value V (Y1, . . . , Yn) :=
sup{EYτ : τ is a stopping rule for Y1, . . . , Yn} and E(max1≤j≤n Yj). It is shown
that the set of ordered pairs {(x, y) : x = V (Y1, . . . , Yn), y = E(max1≤j≤n Yj)
for some sequence Y1, . . . , Yn obtained as above} is precisely the set {(x, y) :
0 ≤ x ≤ 1, x ≤ y ≤ Ψn,β(x)}, where Ψn,β(x) = [(1 − β)n + 2β]x− β−(n−2)x2 if
x ≤ βn−1, and Ψn,β(x) = minj≥1{(1 − β)jx + βj} otherwise. Sharp difference
and ratio prophet inequalities are derived from this result, and an analogous
comparison for infinite sequences is obtained.

1 Introduction

Suppose independent [0, 1]-valued random variables X1, . . . ,Xn are observed sequen-
tially, and the payoff for stopping at time j is Yj = B1 · · ·Bj−1Xj , where B1, B2, . . .
are [0, 1]-valued random variables with a common mean β > 0 that are independent
of each other and of the sequence {Xj}. This paper aims to compare the values
E(max{Y1, . . . , Yn}) and V (Y1, . . . , Yn) := sup{EYτ : τ is a stopping rule}. Such
comparisons have been called prophet inequalities in view of the natural interpreta-
tion of E(max{Y1, . . . , Yn}) as the optimal expected return of a prophet, or player
with complete foresight. Prophet inequalities for independent random variables with-
out discounting were first given by Krengel and Sucheston [10]. With X1, . . . ,Xn as
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above, they showed that E(max{X1, . . . ,Xn}) ≤ 2V (X1, . . . ,Xn) and this bound is
best possible. Simpler proofs of this and related inequalities were given by Hill and
Kertz [6, 7], and Hill [5] subsequently generalized these results by showing that the
prophet region

{(x, y) : x = V (X1, . . . ,Xn) and y = E(max{X1, . . . ,Xn}) for some
sequence X1, . . . ,Xn of independent [0, 1]-valued r.v.’s}

is exactly the set {(x, y) : 0 ≤ x ≤ 1, x ≤ y ≤ 2x − x2}. Boshuizen [2] extended
Hill’s result to independent random variables with a constant discount factor β. He
showed that for 0 < β ≤ 1, the set

{(x, y) : x = V (X1, βX2 . . . , β
n−1Xn) and y = E(max{X1, βX2, . . . , β

n−1Xn})
for some sequence X1, . . . ,Xn of independent [0, 1]-valued r.v.’s}

is precisely the set {(x, y) : 0 ≤ x ≤ 1, x ≤ y ≤ Φβ(x)}, where

Φβ(x) =

{
2x− x2/β, if x ≤ 1 −√

1 − β

1 − (2/β)(
√

1 − β − (1 − β))(1 − x), if x > 1 −√
1 − β.

More recently, Saint-Mont [11, 12] has given several sharp inequalities for random
variables with simultaneous costs and discountings. However, in these papers too the
discount factors are deterministic, and indeed the present article seems to be the first
work to address the prophet problem with random discounting.

This paper is organized as follows. Section 2 states the main result, a prophet re-
gion for a finite sequence of [0, 1]-valued random variables with random discounting.
As Figure 1 below shows, this region is considerably larger than Boshuizen’s prophet
region for the case of a constant discount factor β. From the prophet region, several
sharp difference and ratio prophet inequalities are derived, some of which offer sur-
prising discontinuities as β ↑ 1. Taking limits of the prophet region as n→ ∞ yields
a prophet region for the infinite-horizon case.

The proof of the main result is developed in sections 3 and 4. At the heart
of the argument lies a reduction to fewer random variables in all cases except one
particularly well-structured case. This reduction is carried out in section 3. The
proof is completed in section 4 using conjugate duality. Section 5 briefly discusses a
number of natural extensions.

2 Prophet regions

Throughout this paper, the following notation will be used. For subsets A of the
underlying probability space, I(A) denotes the indicator function of A. For real
numbers x and y, x∨y denotes the maximum of x and y, and x+ := max{x, 0}. The

2



symbol �x	 represents the greatest integer less than or equal to x, and 
x� is the
least integer greater than or equal to x.

In this paper, it will always be assumed that X1,X2, . . . are independent [0, 1]-
valued random variables, and B1, B2, . . . are [0, 1]-valued random variables having a
common mean β > 0 that are independent of each other and of the sequence {Xj}.
Given such sequences of random variables, define

Yj = B1 · · ·Bj−1Xj , j = 1, 2, . . . , (1)

where an empty product is taken to be 1.
For j ∈ IN, Fj is the σ-algebra generated by {X1, . . . ,Xj} ∪ {B1, . . . , Bj−1},

and F0 is the trivial σ-algebra. For a collection of random variables {Xs : s ∈ S},
ess sup{Xs : s ∈ S} denotes the essential supremum of the collection. (See pages 8-9
of [3] for the definition and existence of essential supremum.)

Let T be the set of all stopping rules with respect to the filtration {Fj}. The
value V (Y1, Y2, . . . ) of Y1, Y2, . . . is defined by V (Y1, Y2, . . . ) = sup{E Yt : t ∈ T}, the
value of Y1, . . . , Yn is V (Y1, . . . , Yn) = sup{E Yt : t ∈ T, t ≤ n}, and the conditional
value of Ym, Ym+1, . . . , Yn given Fj is V (Ym, Ym+1, . . . , Yn|Fj) = ess sup{E(Yt|Fj) :
t ∈ T,m ≤ t ≤ n}.
Definition 2.1 For n ≥ 1 and 0 ≤ x ≤ 1, let

Ψn,β(x) =

{
[(1 − β)n+ 2β]x− β−(n−2)x2, if x ≤ βn−1,

(1 − β)jx+ βj , if βj ≤ x ≤ βj−1, 1 ≤ j ≤ n− 1.

Theorem 2.2 (Prophet region for finite sequences). The set of points

{(x, y) : x = V (Y1, . . . , Yn) and y = E(Y1 ∨ · · · ∨ Yn) for some sequence
Y1, . . . , Yn of the form (1)}

is precisely the set {(x, y) : 0 ≤ x ≤ 1, x ≤ y ≤ Ψn,β(x)}.
The prophet region is illustrated in Figure 1 for small values of n. For the sake

of comparison, the figure also includes Boshuizen’s bound for independent random
variables with a fixed discount factor.

The proof of Theorem 2.2 will be developed in the next two sections. Note
that Hill’s classical prophet region for independent [0, 1]-valued random variables
X1, . . . ,Xn (see [5]) follows from Theorem 2.2 by setting β = 1.

Corollary 2.3 (Difference prophet inequalities).

(i) For fixed n and fixed β,

E(Y1∨· · ·∨Yn)−V (Y1, . . . , Yn) ≤



βn−2{(1 − β)(n− 1) + β}2/4, β ≥ 1 − 1/n,

(1 − β)�1/(1 − β)	β�1/(1−β)�, otherwise.
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Figure 1: From the bottom, (i) the diagonal y = x, (ii) Boshuizen’s bound y = Φ1/2(x), (iii)
y = Ψ2,1/2(x), (iv) y = Ψ3,1/2(x). Note that the functions Ψ2,1/2 and Ψ3,1/2 coincide on 1/2 ≤ x ≤ 1.

(ii) For fixed β and for every n,

E(Y1 ∨ · · · ∨ Yn) − V (Y1, . . . , Yn) ≤
{

1/4, β = 1,
(1 − β)�1/(1 − β)	β�1/(1−β)� , β < 1.

(iii) For fixed n and every β,

E(Y1 ∨ · · · ∨ Yn) − V (Y1, . . . , Yn) ≤ (1 − 1/n)n.

(iv) For every n and every β,

E(Y1 ∨ · · · ∨ Yn) − V (Y1, . . . , Yn) < 1/e.

All bounds are sharp, and the bounds in (i)-(iii) are attained.

It will be shown in the next section that the extremal case in Theorem 2.2 is
when B1, B2, . . . are i.i.d. taking the values 0 and 1 only. Thus, Corollary 2.3 (iii)
also gives the best possible bound for the case where B1, B2, . . . are i.i.d. (without
a requirement on the mean).

Observe the discontinuity in the bound (ii): it is not hard to verify that (1 −
β)�1/(1 − β)	β�1/(1−β)� → 1/e as β ↑ 1, while the bound for β = 1 is 1/4.

Corollary 2.4 (Ratio prophet inequalities).
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(i) For fixed n and fixed β,

E(Y1 ∨ · · · ∨ Yn) < {(1 − β)n+ 2β}V (Y1, . . . , Yn).

(ii) For fixed n and every β,

E(Y1 ∨ · · · ∨ Yn) < nV (Y1, . . . , Yn).

Both bounds are sharp.

Taking limits in Theorem 2.2 as n→ ∞ gives the following result.

Theorem 2.5 (Propet region for infinite sequences). The set of points (x, y) such
that x = V (Y1, Y2, . . . ) and y = E(supn Yn) for some sequence Y1, Y2, . . . of the form
(1) is precisely the set {(x, y) : 0 ≤ x ≤ 1, x ≤ y ≤ Ψβ(x)}, where

Ψβ(x) =




2x− x2, if β = 1,
min
j≥1

{(1 − β)jx+ βj}, if β < 1

Again, the function β �→ Ψβ(x) is discontinuous at β = 1: if β < 1 we can write

Ψβ(x) = (1 − β)x
logβ x� + β�logβ x�,

from which it follows that limβ↑1 Ψβ(x) = x − x lnx. Interestingly, this function
was found in [8] as the upper boundary of a prophet region for infinite sequences of
arbitrarily dependent [0, 1]-valued random variables.

As a consequence of Theorem 2.5, the difference inequalities (ii) and (iv) of Corol-
lary 2.3 hold (and remain sharp) when E(Y1∨· · ·∨Yn) and V (Y1, . . . , Yn) are replaced
by E(supn Yn) and V (Y1, Y2, . . . ), respectively.

3 Reduction to sequences with a simple structure

The proof of Theorem 2.2 consists of several steps. First, it is shown that in the
extremal case, B1, B2, . . . may be assumed to be Bernoulli variables. The next step
is to show that it is sufficient to consider random variables X1, . . . ,Xn such that
Xj ∈ {aj , 1}, where (aj : j = 1, . . . , n) is a sequence of nonnegative numbers with
an = 0. The main part of the proof consists in showing that the critical case is when
the numbers a1, . . . , an−1 are nondecreasing. (See Proposition 3.7 below.) Finally,
the upper boundary function Ψn,β(x) is derived for this extremal case using the
technique of conjugate duality.

The first lemma shows that V (Y1, . . . , Yn) depends on B1, . . . , Bn−1 only through
their mean β.
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Lemma 3.1
V (Y1, . . . , Yn) = V (X1, βX2, . . . , β

n−1Xn).

Proof. Follows easily by backward induction (see [3]) using the recursive relation

V (Yj , . . . , Yn|Fj−1) = E[Yj ∨ V (Yj+1, . . . , Yn|Fj)|Fj−1], 1 ≤ j ≤ n,

and the mutual independence of B1, B2, . . . and X1,X2, . . . . �

The following definition is taken from [6].

Definition 3.2 Given a [0, 1]-valued random variable X and constants 0 ≤ a < b ≤
1 let Xb

a, the balayage of X on [a, b], denote a random variable such that Xb
a = X if

X �∈ [a, b], Xb
a = a with probability (b − a)−1 E[(b − X)I(a ≤ X ≤ b)], and Xb

a = b
otherwise.

Lemma 3.3 Let B̂1, . . . , B̂n−1 be i.i.d. {0, 1}-valued and independent of X1, . . . ,Xn

with E B̂1 = β, and let Ŷj = B̂1 · · · B̂j−1Xj for j ≥ 1. Then

(i) V (Ŷ1, . . . , Ŷn) = V (Y1, . . . , Yn), and

(ii) E(Ŷ1 ∨ · · · ∨ Ŷn) ≥ E(Y1 ∨ · · · ∨ Yn).

Proof. Statement (i) is an immediate consequence of Lemma 3.1, and (ii) follows
easily from Lemma 2.2 of [6], using the fact that B̂j = (Bj)10 for all j = 1, . . . , n− 1.
�

In view of Lemma 3.3, we can and will assume for the remainder of this section
that B1, . . . , Bn−1 take the values 0 and 1 only. It is then useful to define the random
variable

N = min{1 ≤ j ≤ n− 1 : Bj = 0} (or = n if no such j exists).

The relationship (1) can now be written as Yj = XjI(N ≥ j), and the value
V (Y1, . . . , Yn) can be interpreted as the optimal expected return of a player who
sees a random number of observations X1, . . . ,XN , where the reward for stopping
after time N is zero. Observe that N has a truncated geometric distribution, and
P(N ≥ j + 1|N ≥ j) = β for j = 1, . . . , n − 1. For the remainder of this paper,
N will be a fixed random variable independent of X1, . . . ,Xn, having the truncated
geometric distribution as described above.

For prophet-like inequalities when the distribution of N is unrestricted, the reader
is referred to the paper [1].

Definition 3.4 For j = 1, . . . , n, let vj := supτ≥j E(Yτ |N ≥ j − 1). Let vn+1 := 0.
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Observe that v1 = E(X1 ∨ v2), while for 2 ≤ j ≤ n,

vj = P(N ≥ j|N ≥ j − 1)E(Xj ∨ vj+1) = β E(Xj ∨ vj+1).

Lemma 3.5 Fix j ∈ {1, . . . , n}, let X̃j = (Xj)1vj+1
∨ vj+1 be independent of N , and

let X̃i = Xi for i �= j. Define Ỹi = X̃iI(N ≥ i) for i = 1, . . . , n. Then

(i) V (Ỹ1, . . . , Ỹn) = V (Y1, . . . , Yn), and

(ii) E(Ỹ1 ∨ · · · ∨ Ỹn) ≥ E(Y1 ∨ · · · ∨ Yn).

Proof. Statement (ii) follows from Lemma 2.2 of [6] and monotonicity. To see
(i) in the case j = 1, observe that V (Ỹ1, . . . , Ỹn) = E(X̃1 ∨ v2) = E(X1 ∨ v2) =
V (Y1, . . . , Yn). For the case j ≥ 2, note that

sup
τ≥j

E(Ỹτ |N ≥ j − 1) = β E(X̃j ∨ vj+1) = β E(Xj ∨ vj+1) = vj .

It thus follows inductively that supτ≥i E(Ỹτ |N ≥ i − 1) = vi for i = 1, . . . , j, and
hence V (Ỹ1, . . . , Ỹn) = v1 = V (Y1, . . . , Yn). �

In view of Lemmas 3.3 and 3.5, it is now possible to phrase the problem of maximizing
E(Y1 ∨ · · · ∨ Yn) for a given value of V (Y1, . . . , Yn) as a constrained optimization
problem with finitely many variables. However, since the expression for E(Y1 ∨ · · · ∨
Yn) depends on the relative ordering of the variables v2, . . . , vn, a direct analytical
solution of this optimization problem appears to be a daunting task. Instead, an
entirely probabilistic argument will be given in Proposition 3.7 below to show that
the critical case is when v2 ≤ v3 ≤ · · · ≤ vn, leading to a manageable expression for
E(Y1 ∨ · · · ∨ Yn). The argument uses the following relationship.

Lemma 3.6 Suppose X1, . . . ,Xn satisfy Xj ∈ {vj+1, 1} for each j = 1, . . . , n. Then

vj = P(Yj ∨ · · · ∨ Yn = 1|N ≥ j − 1), j = 1, . . . , n.

Proof. At each time j, it is optimal to stop if Yj = 1, but we are indifferent between
stopping and continuing if Yj = vj+1 (since this is the optimal expected return given
the present situation if we continue), and also if Yj = 0 (since we already missed
the last observation, or the value of future observations is zero). Thus among the
stopping rules that take at least j observations, the rule τ1 = min{i ≥ j : Yi = 1}
(or = n if no such i exists) is optimal on the event {N ≥ j − 1}, and

vj = E(Yτ1 |N ≥ j − 1) = P(Yj ∨ · · · ∨ Yn = 1|N ≥ j − 1),

since Yτ1 = 0 on the event {Yj ∨ · · · ∨Yn < 1} in view of the fact that Xn ∈ {0, 1}. �
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Proposition 3.7 Suppose Xj ∈ {vj+1, 1} for every j, and suppose there exist indices
j1 and j2 with 1 < j1 < j2 ≤ n such that vj1 > vj2. Then there exist an integer m < n
and random variables X ′

1, . . . ,X
′
m independent of N , such that the random variables

Y ′
j = X ′

jI(N ≥ j) (j = 1, . . . , n) satisfy:

(i) V (Y ′
1 , . . . , Y

′
m) = V (Y1, . . . , Yn), and

(ii) E(Y ′
1 ∨ · · · ∨ Y ′

m) ≥ E(Y1 ∨ · · · ∨ Yn).

Proof. For brevity, let Pj and Ej denote conditional probability and expectation
operators given that N ≥ j. The construction of the sequence X ′

1, . . . ,X
′
m depends

on two cases.
Case 1. Suppose first that max{v2, . . . , vn} > vn. Fix an integer 2 ≤ m < n such

that vm = max{v2, . . . , vn}. Define X ′
1 = X1, . . . ,X

′
m−1 = Xm−1, and X ′

m = the
{0, 1}-valued r.v., independent of N , with EX ′

m = EXm. Let Y ′
j = X ′

jI(N ≥ j) for
j = 1, . . . ,m. Finally, define v′j = supτ≥j E(Y ′

τ |N ≥ j−1). Statement (i) follows since
v′m = β EX ′

m = β EXm = vm, so by backward induction v′j = vj for j = 1, . . . ,m−1.
To see (ii), observe that

Em−1(vm ∨ Y ′
m − vm ∨ Ym ∨ · · · ∨ Yn) = Em−1[(Y ′

m − vm)+ − (Ym ∨ · · · ∨ Yn − vm)+]
= (1 − vm)[Pm−1(Y ′

m = 1) − Pm−1(Ym ∨ · · · ∨ Yn = 1)]
= (1 − vm)(v′m − vm) = 0,

where the third equality follows using Lemma 3.6. Thus

E(Y ′
1 ∨ · · · ∨ Y ′

m) − E(Y1 ∨ · · · ∨ Yn)
= E[(Y1 ∨ · · · ∨ Ym−1 ∨ Y ′

m − Y1 ∨ · · · ∨ Yn)I(Y1 ∨ · · · ∨ Ym−1 < 1, N ≥ m− 1)]
= Em−1(vm ∨ Y ′

m − vm ∨ Ym ∨ · · · ∨ Yn) P(N ≥ m− 1,X1 ∨ · · · ∨Xm−1 < 1)
= 0.

Case 2. If max{v2, . . . , vn} = vn, then there exist integers k and l with 2 ≤ k ≤
l − 2 and l ≤ n such that

max{v2, . . . , vl−1} = vk ≤ vl ≤ vl+1 ≤ · · · ≤ vn. (2)

The basic idea is to replace the random variables Xk, . . . ,Xl−1 with a single random
variable X ′

k whose expectation equals that of Xk, but whose values are the values of
Xl−1. This is possible since β EXk = vk ≥ vl−1 = β EXl−1 ≥ βvl, and so EXk ≥ vl.

Let m := n− (l − k − 1), and define X ′
1, . . . ,X

′
m by X ′

1 = X1, . . . ,X
′
k−1 = Xk−1,

X ′
k = the {vl, 1}-valued r.v., independent of N , with EX ′

k = EXk, and X ′
j =

Xl−k+j−1 for j = k + 1, . . . ,m. Define Y ′
j and v′j as in Case 1. To check that (i) is

satisfied, note that by construction, v′k+1 = vl, and thus

v′k = β E(X ′
k ∨ v′k+1) = β E(X ′

k ∨ vl) = β EX ′
k = β EXk = vk.
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As in Case 1, it follows that V (Y ′
1 , . . . , Y

′
m) = V (Y1, . . . , Yn).

The verification of property (ii) requires more work. Note first that the conditions
on X ′

k imply that

P(X ′
k = vl) =

1 − vk+1

1 − vl
P(Xk = vk+1). (3)

We can write

E(Y ′
1 ∨ · · · ∨ Y ′

m) − E(Y1 ∨ · · · ∨ Yn)
= E[(Y ′

1 ∨ · · · ∨ Y ′
m − Y1 ∨ · · · ∨ Yn)I(N ≥ k, Y1 ∨ · · · ∨ Yk−1 < 1)]

= E[(vk ∨ Y ′
k ∨ · · · ∨ Y ′

m − vk ∨ Yk ∨ · · · ∨ Yn)I(N ≥ k,X1 ∨ · · · ∨Xk−1 < 1)]
= Ek[(1 − vk ∨ Yk ∨ · · · ∨ Yn) − (1 − vk ∨ Y ′

k ∨ · · · ∨ Y ′
m)]

× P(N ≥ k,X1 ∨ · · · ∨Xk−1 < 1).
(4)

To show that the last expectation is nonnegative, let

p = Pk(N ≤ l − 2, Yk ∨ · · · ∨ Yl−2 < 1),

and calculate

Ek(1 − vk ∨ Yk ∨ · · · ∨ Yn)
= p(1 − vk) + Pk(N ≥ l − 1,Xk ∨ · · · ∨Xl−2 < 1)El−1(1 − Yl−1 ∨ · · · ∨ Yn)
= p(1 − vk) + (1 − vl) Pk(N ≥ l − 1,Xk ∨ · · · ∨Xl−1 < 1)

× El−1(1 − Yl−1 ∨ · · · ∨ Yn)
P(Xl−1 < 1)(1 − vl)

= p(1 − vk) + Pk(N ≥ l − 1, Yk ∨ · · · ∨ Yn < 1)
El−1(1 − Yl−1 ∨ · · · ∨ Yn)
Pl−1(Yl−1 ∨ · · · ∨ Yn < 1)

, (5)

where the last equality follows from Lemma 3.6. Next, let N ′ = min{N,m}, and use
the truncated geometric distribution of N to obtain

Ek(1 − vk ∨ Y ′
k ∨ · · · ∨ Y ′

m) =
m∑

i=k

Pk(N ′ = i) E(1 −X ′
k ∨ · · · ∨X ′

i)

=
n∑

j=l−1

Pk(N ′ = j − l + k + 1)E(1 −X ′
k ∨Xl ∨ · · · ∨Xj)

=
n∑

j=l−1

Pl−1(N = j) E(1 −X ′
k ∨Xl ∨ · · · ∨Xj).

Since X ′
k and Xl−1 are both {vl, 1}-valued,

E(1 −X ′
k ∨Xl ∨ · · · ∨Xj) =

P(X ′
k < 1)

P(Xl−1 < 1)
E(1 −Xl−1 ∨Xl ∨ · · · ∨Xj),
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and so

Ek(1 − vk ∨ Y ′
k ∨ · · · ∨ Y ′

m) =
P(X ′

k < 1)
P(Xl−1 < 1)

El−1(1 − Yl−1 ∨ · · · ∨ Yn)

= (1 − vk+1) P(Xk < 1)
El−1(1 − Yl−1 ∨ · · · ∨ Yn)

P(Xl−1 < 1)(1 − vl)

= Pk(Yk ∨ · · · ∨ Yn < 1)
El−1(1 − Yl−1 ∨ · · · ∨ Yn)
Pl−1(Yl−1 ∨ · · · ∨ Yn < 1)

. (6)

Here the second equality follows from (3), and the last equality follows from Lemma
3.6. Subtracting (6) from (5) gives

Ek(1 − vk ∨ Yk ∨ · · · ∨Yn) − Ek(1 − vk ∨ Y ′
k ∨ · · · ∨ Y ′

m)

= p

[
1 − vk − El−1(1 − Yl−1 ∨ · · · ∨ Yn)

Pl−1(Yl−1 ∨ · · · ∨ Yn < 1)

]
= p [1 − vk − El−1(1 − Yl−1 ∨ · · · ∨ Yn|Yl−1 ∨ · · · ∨ Yn < 1)]
≥ 0,

since the condition N ≥ l−1 implies that 1−Yl−1∨· · ·∨Yn ≤ 1−Xl−1 ≤ 1−vl ≤ 1−vk.
This, together with the development (4), yields (ii). �

4 Proof of the main theorem

In order to avoid a constrained optimization problem, the method of conjugate du-
ality will be used. Recall that a real-valued function g defined on an interval I is
concave if g(λa+ (1− λ)b) ≥ λg(a) + (1− λ)g(b) for all a, b ∈ I and all λ, 0 < λ < 1.
As a reference for the following definition and lemma see Chapter 4 of Stoer and
Witzgall [13].

Definition 4.1 Let g be a real-valued function defined on an interval I ⊂ IR. The
concave conjugate function g∗ of g is defined on the set I∗ = {γ ∈ IR : infx∈I [xγ −
g(x)] > −∞} by g∗(γ) = infx∈I [xγ − g(x)].

Lemma 4.2 Let g be a concave function defined on an interval I ⊂ IR. Then
(i) g∗ is a concave function and I∗ is an interval; and
(ii) (g∗)∗ = g and (I∗)∗ = I if the hypograph of g, {(r, x) ∈ IR × I : r ≤ g(x)}, is

closed.

Definition 4.3 The prophet region Rn is the set of ordered pairs {(x, y) : x =
V (Y1, . . . , Yn), y = E(Y1 ∨ · · · ∨ Yn), Yj = XjI(N ≥ j), for some sequence of inde-
pendent r.v.’s X1, . . . ,Xn}. The upper boundary function Γn is defined on [0, 1] by
Γn(x) = sup{y : (x, y) ∈ Rn}.
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Since it is not a priori clear that the function Γn is concave, mixtures of in-
dependent random variables are needed. Following Kertz [9], p. 94, say that a
sequence of random variables X1, . . . ,Xn is a mixture of independent r.v.’s un-
der a σ-algebra G if X1, . . . ,Xn are conditionally independent given G; that is,
P(X1 ∈ B1, . . . ,Xn ∈ Bn|G) = P(X1 ∈ B1|G) · · ·P(Xn ∈ Bn|G) for all Borel sets
B1, . . . , Bn of IR. It is assumed that the randomization for a mixture takes place
before the values of the random variables are obtained.

Definition 4.4 Let X1, . . . ,Xn be a mixture of independent r.v.’s under G, indepen-
dent of N , and let Yj = XjI(N ≥ j) for j = 1, . . . , n. A stop rule for Y1, . . . , Yn

is a r.v. τ taking values in {1, . . . , n} such that {τ = j} ∈ σ(G, Y1, . . . , Yj) for each
j = 1, . . . , n. The value V (Y1, . . . , Yn) is defined by V (Y1, . . . , Yn) = sup{EYτ : τ is
a stop rule for Y1, . . . , Yn}.
Definition 4.5 The function Φn is defined on [0, 1] by Φn(x) = sup{E(Y1∨· · ·∨Yn) :
V (Y1, . . . , Yn) = x, Yj = XjI(N ≥ j), for some mixture X1, . . . ,Xn of independent
r.v.’s that are independent of N}.

It is clear from the above definitions that Γn ≤ Φn.

Lemma 4.6 (i) Φn is a concave function with closed hypograph; (ii) (Φ∗
n)∗ = Φn;

and (iii) Φ∗
n = Γ∗

n.

Proof. Statement (i) follows as in Lemma 4.5 of [9]; (ii) follows from (i) and Lemma
4.2; and (iii) follows as in Proposition 4.6 of [9]. �

Proposition 4.7 Let γ ∈ IR. Then

Γ∗
n(γ) =




γ − 1, γ ≤ 1 − β,

βj−1[γ − β − (1 − β)j], (1 − β)(j − 1) ≤ γ ≤ (1 − β)j, 2 ≤ j ≤ n,

−βn−2[γ − 2β − (1 − β)n]2/4, (1 − β)n ≤ γ ≤ (1 − β)n + 2β,
0, (1 − β)n+ 2β ≤ γ.

Proof. By Lemma 3.5 and Proposition 3.7, we may assume that Xj ∈ {vj+1, 1}
for j = 1, . . . , n − 1, Xn ∈ {0, 1}, and v2 ≤ v3 ≤ · · · ≤ vn. For brevity, write
V = V (Y1, . . . , Yn), M = E(Y1 ∨ · · · ∨ Yn), and qj = P(Xj < 1), j = 1, . . . , n.
The above assumptions and the truncated geometric distribution of N lead to the
expression

M = 1 −
n−1∑
j=1

(1 − β)βj−1q1 · · · qj(1 − vj+1) − βn−1q1 · · · qn(1 − vn)

= 1 −
n−2∑
j=1

(1 − β)βj−1q1 · · · qj(1 − vj+1) − βn−2q1 · · · qn−1(1 − vn)2,
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where the second equality follows since vn = β EXn = β(1 − qn). Similarly, V =
v1 = EX1 = 1 − q1(1 − v2), and so

γV −M = γ{1 − q1(1 − v2)} +
n−2∑
j=1

(1 − β)βj−1q1 · · · qj(1 − vj+1)

+ βn−2q1 · · · qn−1(1 − vn)2 − 1.

(7)

For each k with 2 ≤ k < n, the relationship vk = β EXk = β{1 − qk(1 − vk+1)}
implies that vk depends linearly on each of the variables qk, . . . , qn−1, and does not
depend on q1, . . . , qk−1. Hence γV −M depends linearly on each qj, j = 1, . . . , n− 1.
In order to minimize γV −M it therefore suffices to consider values of q1, . . . , qn−1

in {0, 1}. There are now two cases.
Case 1. qk = 0 for some k < n, and qj = 1 for all j < k. Then vj = βvj+1 for

j = 2, . . . , k − 1, and vk = β. Hence (7) simplifies to

γV −M = βk−1[γ − β − (1 − β)k]. (8)

Case 2. qj = 1 for all j < n. Then

γV −M = βn−2vn[γ + vn − 2β − (1 − β)n]. (9)

This must be minimized over vn ∈ [0, β]. A closer inspection reveals that the mini-
mum value of (9) is attained at vn = v∗n, where

v∗n =



β, γ ≤ (1 − β)n,
β − (γ − (1 − β)n)/2, (1 − β)n ≤ γ ≤ (1 − β)n+ 2β,
0, (1 − β)n + 2β ≤ γ.

(10)

If vn = β, then (9) simplifies to γV −M = βn−1[γ − β − (1− β)n], extending (8)
to the value k = n. A comparison of the functions fk(γ) := βk−1[γ − β − (1 − β)k]
shows that fk+1(γ) ≤ fk(γ) if and only if γ ≥ (1 − β)k. Thus for γ ≤ (1 − β)n,
Γ∗

n(γ) = min1≤k≤n fk(γ) = fk0(γ), where k0 is the largest integer k such that γ ≥
(1 − β)k, or k0 = 1 if no such k exists.

On the other hand, if γ ≥ (1 − β)n it may be checked that

−βn−2[γ − 2β − (1 − β)n]2/4 ≤ fn(γ), (11)

since the two sides of this inequality are equal when γ = (1−β)n, and the derivative
of the left side with respect to γ is no greater than the derivative of the right side.
Since fn(γ) ≤ fj(γ) for all j < n, it follows from (10) and (11) that Γ∗

n(γ) =
−βn−2[γ − 2β − (1 − β)n]2/4 when (1 − β)n ≤ γ ≤ (1 − β)n + 2β. Finally, if
γ ≥ (1−β)n+2β, then v∗n = 0 and fj(γ) ≥ fn(γ) > 0 for all j, and hence Γ∗

n(γ) = 0,
from (9). �
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Proposition 4.8 Φn = (Γ∗
n)∗ = Ψn,β.

Proof. That Φn = (Γ∗
n)∗ follows from Lemma 4.6. To compute (Γ∗

n)∗, fix x ∈ [0, 1],
and define a function f(γ) := fx(γ) := xγ − Γ∗

n(γ). Observe from Proposition 4.7
that f is convex, continuous, and piecewise differentiable with derivative

f ′(γ) =




x− 1, γ < 1 − β,

x− βj−1, (1 − β)(j − 1) < γ < (1 − β)j,
2 ≤ j ≤ n,

x− βn−2[(1 − β)n+ 2β − γ]/2, (1 − β)n < γ < (1 − β)n+ 2β,
x, (1 − β)n + 2β < γ.

Thus if x ≤ βn−1, f attains its minimum value at the point γ∗ = (1 − β)n + 2β −
2β−(n−2)x, and Φn(x) = f(γ∗) = [(1 − β)n + 2β]x− β−(n−2)x2. On the other hand,
if x > βn−1, then the minimum value of f occurs at the point γ∗ = (1− β)j∗, where
j∗ = max{j : x ≤ βj−1}. Hence Φn(x) = f(γ∗) = (1 − β)j∗x + bj

∗
. In both cases,

Φn(x) = Ψn,β(x). �

Proof of Theorem 2.2. Propositions 3.3 and 4.8 imply that if x = V (Y1, . . . , Yn)
for some sequence Y1, . . . , Yn satisfying (1), then E(Y1 ∨ · · ·∨Yn) ≤ Γn(x) ≤ Φn(x) =
Ψn,β(x). Conversely, let (x, y) be any point with 0 ≤ x ≤ 1 and x ≤ y ≤ Ψn,β(x).
Define sequences of random variables X(1)

1 , . . . ,X
(1)
n and X(2)

1 , . . . ,X
(2)
n by X(1)

1 ≡ x,
X

(1)
2 ≡ 0, . . . ,X(1)

n ≡ 0, X(2)
j ≡ min{xβ−(j−1), 1} for j = 1, . . . , n − 1, and X

(2)
n =

the {0, 1}-valued r.v with EX(2)
n = min{xβ−(n−1), 1}. Define Y (i)

j = X
(i)
j I(N ≥ j)

for i = 1, 2 and j = 1, . . . , n. Then V (Y (1)
1 , . . . , Y

(1)
n ) = V (Y (2)

1 , . . . , Y
(2)
n ) = E(Y (1)

1 ∨
· · · ∨ Y (1)

n ) = x, and E(Y (2)
1 ∨ · · · ∨ Y (2)

n ) = Ψn,β(x).
For 0 ≤ t ≤ 1 and 1 ≤ j ≤ n, let Xj(t) = (1 − t)X(1)

j + tX
(2)
j and Yj(t) =

Xj(t)I(N ≥ j). Note that X(i)
j ≥ β EX(i)

j+1 for i = 1, 2 and all j, and therefore
Xj(t) ≥ β EXj+1(t) for all t and all j. It follows that V (Y1(t), . . . , Yn(t)) = EX1(t) =
x. Finally, since E(Y1(t)∨ · · · ∨Yn(t)) varies continuously from x at t = 0 to Ψn,β(x)
at t = 1, there is some t0 ∈ [0, 1] such that E(Y1(t0) ∨ · · · ∨ Yn(t0)) = y. �

5 Extensions and examples

1. Scaling. It is straightforward to extend the result of Theorem 2.2 to random
variables X1, . . . ,Xn taking values in an interval [0, b] for b > 0: the prophet region
simply gets scaled by a factor b. More precisely, the set of points (x, y) such that x =
V (Y1, . . . , Yn) and y = E(Y1 ∨ · · · ∨ Yn) for some sequence Y1, . . . , Yn of the form (1),
where X1, . . . ,Xn ∈ [0, b], is exactly the set {(x, y) : 0 ≤ x ≤ b, x ≤ y ≤ bΨn,β(x/b)}.
The results of Corollary 2.3 and Theorem 2.5 are extended analogously.
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On the other hand, there seems to be no obvious generalization to arbitrary
intervals [a, b], even when a > 0. The standard transformation by translation and
scaling (e.g. [6, 9]) does not apply here, due to the multiplicative nature of the
definition (1). An attempt to derive the prophet region from scratch appears to lead
to tedious calculations, and this task is not pursued here.

2. Fixed discount distributions. A much more difficult problem arises when the
discount factors B1, B2, . . . must come from given distributions with mean β. If n = 2
however, only one discount factor B is involved, and a sharp difference inequality
can be established as follows.

Theorem 5.1 Let X1,X2, and B be independent [0, 1]-valued r.v.’s with EB = β,
and let φ(u) = E(B − u)+ for 0 ≤ u ≤ 1. Then

E(X1 ∨BX2) − V (X1, BX2) ≤ sup
x∈[0,1]

xφ(βx),

and this bound is attained.

Proof. Using balayage and backward induction we may assume that, in the extremal
case, X1 ≡ E(BX2) = β EX2, and X2 ∈ {0, 1}. Then

E(X1 ∨BX2) − V (X1, BX2) = E(β EX2 ∨BX2) − β EX2 = E(BX2 − β EX2)+

= E(B − β EX2)+ P(X2 = 1) = φ(β EX2) EX2.

Since EX2 can take on any value in [0, 1], the theorem follows. �

The value supx∈[0,1] xφ(βx) is easy to calculate for many common distributions of
B. As an example, consider the uniform distribution for B. Then β = 1/2 and
φ(u) = (1 − u)2/2, and so supx∈[0,1] xφ(βx) = maxx∈[0,1] ((x/2)(1 − x/2)2) = 4/27.

Example 5.2 Suppose X1,X2 and B are independent, all having the uniform dis-
tribution on (0, 1), so that β = 1

2 . Then

V (X1, BX2) = E(X1 ∨ β EX2) = E(X1 ∨ 1
4) =

17
32
,

and the value of E(X1 ∨BX2) is obtained as follows: by the independence of X2 and
B, P(BX2 ≤ x) = x(1 − lnx) for 0 < x ≤ 1, and hence,

E(X1 ∨BX2) =
∫ 1

0
P(X1 ∨BX2 ≥ x) dx =

∫ 1

0
[1 − x2(1 − lnx)] dx =

5
9
.

Thus, the prophet’s advantage is 7/288 ≈ 0.0243, which is about one-sixth the bound
from Theorem 5.1 for a uniform B.
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3. Discounts greater than one. While discount factors in real life are usually
between 0 and 1, it is conceivable (i.e. in times of deflation) that the discount factors
are sometimes greater than 1. How do the prophet inequalities in this paper change
in such cases? While refraining from a full study, we illustrate this difference for the
special case where n = 2 and B1 takes values in [0, 2].

Proposition 5.3 For all independent [0, 1]-valued random variables X1 and X2, and
for every [0, 2]-valued random variable B with mean β which is independent of X1

and X2,

E(X1 ∨BX2) − V (X1, BX2) ≤
{
β − β2/2, β ≤ 1,
1/2, β > 1.

and this bound is attained.

Proof. As before, we may assume that B ∈ {0, 2} and X2 ∈ {0, 1}. Consider two
cases:

Case 1. If β EX2 > 1, then certainly β > 1, and

E(X1 ∨BX2) − V (X1, BX2) ≤ E(1 ∨BX2) − β EX2 = E(1 −BX2)+

= 1 − P(B = 2,X2 = 1) = 1 − (β/2)EX2 ≤ 1/2.

Case 2. If β EX2 ≤ 1, then we may assume additionally that X1 ∈ {β EX2, 1}.
Thus,

E(X1 ∨BX2)−V (X1, BX2) = E(BX2 −X1)+ ≤ E(BX2 − β EX2)+

= (2 − β EX2) P(B = 2,X2 = 1) = (β/2)EX2(2 − β EX2).

This last expression is always at most 1/2, and is bounded above by β − β2/2 when
β ≤ 1, since EX2 ≤ 1.

The bound is attained by taking B ∈ {0, 2} with mean β, and if β ≤ 1, by taking
X1 ≡ β and X2 ≡ 1; and if β > 1, by taking X1 ≡ 1 and X2 ∈ {0, 1} with mean 1/β.
�

It is interesting to compare the above bound with the corresponding bound from
Corollary 2.3 (i): the latter evaluates to β − β2 if β ≤ 1/2, and to 1/4 if β > 1/2.

4. Discounts with restricted variances. From the point of view of applications,
it seems worthwhile to consider models that restrict the fluctuations in the sequence
B1, B2 . . . . One way to do this is to let the Bj be independent with a given mean,
and variances uniformly bounded by some fixed number σ2. Exact prophet regions
may be difficult to obtain for this model. But in the case n = 2, a fairly simple
difference prophet inequality can be derived.
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Theorem 5.4 Let 0 < β ≤ 1 and σ2 ≤ β(1 − β). For all independent [0, 1]-valued
random variables X1,X2 and B, where B has mean β and variance bounded above
by σ2,

E(X1 ∨BX2) − V (X1, BX2) ≤
{

(β2 + σ2)/4β, if σ ≤ β,

βσ2/(β2 + σ2), if σ > β.

This bound is attained.

Proof. The key to the proof is the following result due to Heijnen and Goovaerts
[4]. For any [0, 1]-valued random variable B with mean β and variance σ2, and for
any number a ∈ [0, 1], the largest possible value of E(B ∨ a) is ψ(a), defined by

ψ(a) =



β + σ2a

β2+σ2 , a ≤ β2+σ2

2β ,
1
2 [a+ β +

√
(a− β)2 + σ2], β2+σ2

2β ≤ a ≤ 1−β2−σ2

2(1−β) ,
σ2+(1−β2)a
σ2+(1−β)2

, a ≥ 1−β2−σ2

2(1−β) .

(12)

By doing a balayage of B if necessary, we may assume that the variance of B is
exactly σ2. For brevity, write V := V (X1, BX2), and M := E(X1∨BX2). As before,
we have V = E(X1 ∨ β EX2), and, regardless of the distribution of B, the extremal
case is when X1 ≡ β EX2, and X2 ∈ {0, 1}. This implies that V = β EX2, and

M = E(β EX2 ∨B) P(X2 = 1) + β EX2 P(X2 = 0)
≤ ψ(β EX2) EX2 + β EX2(1 − EX2).

It follows that

M − V ≤ 1
β

[aψ(a) − a2], where a = β EX2.

Consider the function f(a) := aψ(a)− a2. On the interval 0 < a < (β2 + σ2)/2β, we
have

f ′(a) = β − 2β2a

β2 + σ2
> 0.

On the interval (β2 + σ2)/2β < a < (1 − β2 − σ2)/2(1 − β), we have

f ′(a) =
1
2

[
(a− β)(2a − β) + σ2√

(a− β)2 + σ2
− (2a− β)

]
.

With some algebra, this can be seen to be nonpositive exactly when a ≥ (β2+σ2)/2β.
Finally, on the interval (1 − β2 − σ2)/2(1 − β) < a < 1, we have

f ′(a) =
σ2

σ2 + (1 − β)2
(1 − 2a) < 0,
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since the inequality σ2 ≤ β(1 − β) implies that a > 1/2.
It follows that f(a) is maximized at a∗ := (β2 + σ2)/2β. However, a cannot

exceed β, and so the cases a∗ ≤ β and a∗ > β have to be considered separately. Note
that a∗ ≤ β if and only if σ ≤ β. Thus, if σ ≤ β,

M − V ≤ f(a∗)
β

=
a∗

β
[ψ(a∗) − a∗] =

β2 + σ2

4β
,

while if σ > β,

M − V ≤ f(β)
β

= ψ(β) − β =
βσ2

β2 + σ2
.

This proves the inequality in the theorem.
What do the extremal distributions look like? If σ ≤ β, take X1 ≡ a∗ = (β2 +

σ2)/2β; take X2 ∈ {0, 1} with P(X2 = 1) = a∗/β = (β2 + σ2)/2β2; and take for B
the unique distribution with mean β and variance σ2 on the points {0, β + σ2/β}. If
σ > β, take X1 ≡ β, X2 ≡ 1, and B as above. �

Getting the upper boundary function of the prophet region appears to require
tedious calculations, since for fixed V , the maximum value ofM is sometimes attained
for a in the interior of the interval [(β2 +σ2)/2β, (1−β2 −σ2)/2(1−β)]. The critical
point is then the solution to a quartic equation. These calculations are omitted here.

It is also noted that the method of proof used above does not in any obvious way
generalize to more random variables. Such generalization would require additional
resources.
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