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Abstract

Let X1,X2, . . . be any sequence of nonnegative integrable random vari-

ables, and let N ∈ {1, 2, . . . } be a random variable with known distribution,

independent of X1,X2, . . . . The optimal stopping value supt E(XtI(N ≥ t)) is

considered for two players: one who has advance knowledge of the value of N ,

and another who does not. Sharp ratio and difference inequalities relating the

two players’ optimal values are given in a number of settings. The key to the

proofs is an application of a prophet region for arbitrarily dependent random

variables by Hill and Kertz (Trans. Amer. Math. Soc. 278, 197-207 (1983)).
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1 Introduction

This paper compares the optimal stopping values of two players possessing different

degrees of information in a random horizon model. More precisely, let X1, X2, . . .

be any sequence of nonnegative integrable random variables, and let N be a random

variable with known distribution, independent of X1, X2, . . . and taking values in

the positive integers. Suppose two players sequentially observe the random variables

X1, . . . , XN . Each player can stop at any stage j, and will then receive Xj if N ≥ j,

or zero if N < j. Assume that one player, henceforth to be called the informed

gambler, knows the value of N before seeing the first observation, whereas the other

player, to be called the uninformed gambler, knows only the distribution of N , but

not its actual value, and hence runs a real risk of rejecting the last observation and

ending up with nothing. How widely can their optimal expected returns diverge?

We will give sharp inequalities relating the two players’ optimal values in the

following three settings:

(i) N is almost-surely bounded;

(ii) The Xj are uniformly bounded;

(iii) N is almost-surely bounded and the Xj are uniformly bounded.

The key to deriving these results is to show that the optimal values of the two

players can be “sandwiched” between the values of a prophet and a gambler in an

associated classical prophet problem. In a classical prophet problem, the expected

return of a prophet, who has complete foresight into the future, is compared with

that of a gambler, who has no such foresight. Hence if a sequence of random vari-

ables Y1, . . . , Yn is observed, a comparison of prophet and gambler comes down to

comparing M := E(maxj≤n Yj) and V := supt E Yt, where t ranges over all (non-

anticipatory) stopping rules for Y1, . . . , Yn. Prophet inequalities have been a popular

area of study since Krengel and Sucheston [11] published their celebrated inequality
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(M < 2V if Y1, . . . , Yn are independent and nonnegative). Dozens of extensions and

variations have been published since, many of which are mentioned in the survey

paper by Hill and Kertz [9]. A more recent overview is the book by Harten et al. [6],

along with its revised and translated version by Schmitz [15]. However, new results

have continued to appear at a steady rate to this date.

To solve the problem of the informed and the uninformed gambler, it will be shown

that the informed gambler’s advantage (both proportionate and difference-wise) is

bounded above by the advantage of a prophet over a gambler in optimal stopping

of the sequence Yj = XjI(N ≥ j). Standard prophet inequalities for arbitrarily

dependent random variables by Hill and Kertz [8] then immediately carry over to

the informed/uninformed gambler case. Finally, concrete examples will be given to

show that the bounds are sharp. In case (iii), for instance, the extremal case is when

the Xj are degenerate random variables that form an increasing geometric sequence,

and the distribution of N is truncated geometric in such a way that the process

{Yj} is a martingale. Similar distributions are ε-extremal in cases (i) and (ii), where

the best-possible inequality is strict. Since the random variables X1, X2, . . . in the

extremal cases are independent, the same inequalities are sharp for the smaller class

of independent random variables.

The optimal stopping problem with a random number of observations has been

considered by a number of authors, but mostly in the framework of the best choice

or secretary problem, where the objective is to maximize the probability of choosing

the best among an unknown number N of candidates. For example, Presman and

Sonin [12] and Rasmussen and Robbins [13] assume, as in the present note, that N is

a random variable with known distribution. On the other hand, Hill and Krengel [10]

assume that N is chosen by an opponent so as to minimize the player’s probability

of success, giving minimax strategies for the player and the opponent. A different

approach, where candidates arrive at i.i.d. random times, was studied by Bruss [3]

and Bruss and Samuels [4]. Note that in all of these papers, the objective is different
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from the objective considered here, which is to maximize the expected value of the

selected observation.

More generally, the random horizon model can be viewed as a special case of

optimal stopping with partial information. The most commonly studied type of

partial information is that of unknown distributions, and Allaart and Monticino [1]

and Saint-Mont [14] have proved prophet-like inequalities comparing the return of a

player who knows the distributions of the random variables to that of a player who

does not. Exploring yet another type of partial information, Assaf et al. extend

well-known prophet inequalities to a model where only a noise-corrupted version of

the random variables can be observed.

2 Notation and Results

In order to give formal statements of the main results, some notation is needed.

For a sequence of random variables Y1, Y2, . . . , let V (Y1, Y2, . . . ) = supt E Yt and

V (Y1, . . . , Yj) = supt{E Yt : t ≤ j}, where t ranges over the set of all stopping rules

measurable with respect to the natural filtration of Y1, Y2, . . . . For j = 1, 2 . . . ,

introduce the sigma algebras

Fj = σ{X1I(N ≥ 1), . . . , XjI(N ≥ j)}

and

F+
j = σ{X1, . . . , Xj, N}

(where I(A) denotes the indicator random variable of the event A). Note that our

choice of Fj reflects the view that the uninformed gambler will not know when the

final observation has been reached: after the Nth observation, he will merely see a

string of zeros, not knowing whether these are due to zero values among the Xj , or to

the time horizon having been reached. Instead, we could use the larger sigma algebra

F̂j = σ{X1, I(N ≥ 1), . . . , Xj, I(N ≥ j)}. With this choice, the uninformed gambler
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would possess more information, but his optimal stopping value would nonetheless

be the same. Thus, the choice is immaterial.

Let T be the set of stopping rules adapted to the filtration {Fj}j≥1, and let T +

be the set of stopping rules adapted to the filtration {F+
j }j≥1. Note that T contains

those stopping rules available to the uninformed gambler, whereas T + consists of

those stopping rules available to the informed gambler. Define

VU := sup{E(XtI(N ≥ t)) : t ∈ T },

and

VI := sup{E(XtI(N ≥ t)) : t ∈ T +}.

Since Fj ⊆ F+
j , it is obvious that VU ≤ VI . Converse inequalities are given by the

following theorems.

Theorem 2.1 If N ≤ n a.s. for some integer n ≥ 2, and if P(max{X1, . . . , XN} >

0) > 0, then

VI < nVU , (1)

and this bound is sharp.

Theorem 2.2 If Xj ∈ [a, b] for all j (where 0 ≤ a < b), then

VI − VU <




be−1, if a/b ≤ e−1

a ln(b/a), otherwise.
(2)

If, furthermore, N ≤ n a.s., then

VI − VU ≤




b(1 − 1/n)n, if a/b ≤ (1 − 1/n)n−1

a(n − 1)(1 − (a/b)1/(n−1)), otherwise.
(3)

All bounds are sharp, and the bounds in (3) are attained.
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The bounds given in inequalities (2) and (3) can be interpreted as the maximum

amounts one should be willing to pay for the privilege of being told in advance the

number of available observations. For example, suppose there is no upper bound on

N , but the random variables X1, X2, . . . are known to take values in [1
2
, 1]. Then

inequality (2) implies that one should never pay more than (ln 2)/2 ≈ .3466 for

information about the total number of observations.

Example 2.3 A job seeker, fresh from college, has submitted 25 job applications.

An unknown number N of these will result in job offers. Assume for the sake of

simplicity that the job seeker aims to maximize his expected starting salary, and

that for a new graduate with the qualifications of the job seeker, starting salaries

range from $50,000 to $70,000. From statistical job market data, the job seeker

knows both the distribution of N and the distribution of the prospective starting

salaries. If every offer must be accepted or declined immediately as it comes in, how

much more could the job seeker have expected to make if he could foretell the exact

number of job offers to be extended to him?

Using inequality (3) with n = 25, a = 50, 000 and b = 70, 000 we find that in the

worst of all cases, this difference is 50, 000 · 24 · (1 − (5/7)1/24) ≈ $16706.

3 Proofs

For j = 1, 2, . . . , define

Yj = XjI(N ≥ j).

The first lemma makes precise the claim from the introduction that the optimal

values VU and VI are “sandwiched” between the values V and M of the classical

prophet problem associated with the sequence {Yj}.

Lemma 3.1 (i) VU = V (Y1, Y2, . . . ), and VI ≤ E(supj≥1 Yj).

(ii) If N ≤ n a.s., then VU = V (Y1, . . . , Yn), and VI ≤ E(max{Y1, . . . , Yn}).
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Proof. That VU = V (Y1, Y2, . . . ) follows immediately from the definition of VU . The

inequality for VI can be seen by observing that the informed gambler on the set

{N = j} can employ the stopping rule optimal for the sequence X1, . . . , Xj . Using

the independence of N from X1, X2, . . . , this gives

VI =
∞∑

j=1

V (X1, . . . , Xj) P(N = j)

≤
∞∑

j=1

E(max{X1, . . . , Xj}) P(N = j)

= E(max{X1, . . . , XN})

= E

(
sup
j≥1

Yj

)
.

Statement (ii) follows from (i) since, if N ≤ n a.s., then Yj = 0 for all j > n. �

The next lemma recollects the prophet inequalities on which the results of this paper

are based. Variations of the first inequality have appeared in [7] and [8]. However,

it does not seem to have been stated explicitly in the stronger form below.

Lemma 3.2 (i) Let n ≥ 2, and let Y1, . . . , Yn be any sequence of nonnegative, inte-

grable random variables such that P(maxj≤n Yj > 0) > 0. Then

E

(
max
j≤n

Yj

)
< nV (Y1, . . . , Yn). (4)

(ii) [Hill and Kertz [8], Theorem 3.2.] Let Y1, . . . , Yn be any sequence of random

variables taking values in [0, 1], and let V (Y1, . . . , Yn) = x. Then

E

(
max
j≤n

Yj

)
≤ x

(
1 + (n − 1)(1 − x1/(n−1))

)
, (5)

and this bound is attained.

(iii) [Hill and Kertz [8], Theorem 4.2.] Let Y1, Y2, . . . be any sequence of random

variables taking values in [0, 1], and let V (Y1, Y2, . . . ) = x. Then

E

(
sup
j≥1

Yj

)
≤ x − x ln x.

This bound is sharp, and holds with strict inequality if 0 < x < 1.
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Proof of (i). Observe first that E(max Yj) ≤
∑

E Yj ≤ n max E Yj ≤ nV (Y1, . . . , Yn).

Suppose the two sides of (4) are equal. Then E(maxYj) = E(
∑

Yj), and therefore

max Yj =
∑

Yj a.s. But this means that with probability one, there is an index j0

such that Yj = 0 for all j �= j0. It follows that the rule t = min{j : Yj > 0} (or

= n if maxj≤n Yj = 0) is optimal, and thus V (Y1, . . . , Yn) = E Yt = E(max Yj) =

nV (Y1, . . . , Yn), a contradiction since n ≥ 2 and the hypothesis of the proposition

implies E(max Yj) > 0. Hence the inequality is strict. �

Note that the weak-inequality version of (4) appears in Proposition 1 of Hill and

Kertz [7]. The result with strict inequality is given in Corollary 3.5 of Hill and Kertz

[8], but under the unnecessary hypothesis that Yj ∈ [0, 1].

Proof of Theorem 2.1. The inequality (1) follows directly from Lemma 3.1 and

Lemma 3.2 (i). To see that the bound is sharp, let K be a constant greater than 1,

and let Xj = Kj for all j. Let P(N = j) = (K−1)j−1(1 − K−1) for 1 ≤ j ≤ n − 1,

and P(N = n) = (K−1)n−1. Then V (X1, . . . , Xj) = E Xj = Kj for all j, so that

VI =

n∑
j=1

P(N = j)V (X1, . . . , Xj)

=
n−1∑
j=1

(K−1)j−1(1 − K−1)Kj + (K−1)n−1Kn

= nK − (n − 1).

On the other hand, one checks easily that the process Yj = XjI(N ≥ j) forms a

martingale, and thus VU = V (Y1, . . . , Yn) = E Y1 = K. Therefore,

VI

VU
= n − n − 1

K
,

and letting K → ∞ shows that (1) is sharp. �

Proof of Theorem 2.2. Note that it is sufficient to prove the theorem for the case

b = 1, since the general case then follows by a simple rescaling. Only the proof of

(3) will be given here. The proof of (2), which is analogous, is left to the reader.
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Assume then that Xj ∈ [a, 1], and that N ≤ n almost surely. Lemma 3.2 (ii)

implies that if VU = V (Y1, . . . , Yn) = x, then

VI ≤ E max{Y1, . . . , Yn} ≤ x
(
1 + (n − 1)(1 − x1/(n−1))

)
,

and hence

VI − VU ≤ x(n − 1)(1 − x1/(n−1)). (6)

Note that the right hand side of (6) is a unimodal function of x, with a unique

maximum at x∗ = (1− 1/n)n−1. Since the hypothesis Xj ∈ [a, 1] implies that x ≥ a,

VI − VU is maximized at x = x∗ if a ≤ x∗, and at x = a otherwise. Substituting

these values back into (6) gives (3) for the case b = 1.

To show that the bound is attained, define

q =




1 − 1/n, if a ≤ x∗

a1/(n−1), if a > x∗.

Let Xj ≡ qn−j for j = 1, 2 . . . , n, let P(N = j) = qj−1(1 − q) for 1 ≤ j ≤ n − 1,

and let P(N = n) = qn−1. Then the sequence {Yj} defined by Yj = XjI(N ≥ j) is a

martingale, and a calculation similar to that in the proof of Theorem 2.1 shows that

VI − VU =




(1 − 1/n)n, if a ≤ x∗

a(n − 1)(1 − a1/(n−1)), if a > x∗.

Finally, the sharpness of (2) follows from that of (3) by letting n → ∞. �

Remark 3.3 The martingale {Yj} occurring in the above proof was given by Du-

bins and Pitman [5] as the extremal process attaining their maximal inequality for

martingales. The same process was used by Hill and Kertz [8] to demonstrate the

sharpness of inequality (5).

Remark 3.4 Note that the extremal sequences X1, X2, . . . given in the above proofs

are in fact independent. Thus, the inequalities in Theorems 2.1 and 2.2 would remain
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best possible if the strictly smaller class of sequences of independent random variables

were being considered. This makes the type of comparison considered here quite

different from classical prophet inequalities, where independence usually reduces the

prophet’s advantage significantly.

Remark 3.5 Since the proofs of Theorems 2.1 and 2.2 are based on Lemmas 3.1 and

3.2, it is easy to check that the inequalities (1)-(3) remain valid if VI is replaced with

the (potentially larger) E(supj≥1 Yj). Thus, an ‘absolute prophet’ who has advance

knowledge of both N and X1, X2, . . . would, in the extremal case, not have a greater

advantage over the uninformed gambler than the informed gambler has. In this

sense, advance knowledge of the number of available observations is actually more

empowering than advance knowledge of the observations themselves.
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