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Abstract. This paper concerns the maximum value and the set of maximum
points of a random version of Takagi's continuous, nowhere di�erentiable function.
Let F (x) :=

∑∞
n=1

(
1
2

)n−1
εnφ(2n−1x), x ∈ R, where ε1, ε2, . . . are independent,

identically distributed random variables taking values in {−1, 1}, and φ is the
�tent map� de�ned by φ(x) = 2dist (x,Z). Let p := P (ε1 = 1), M := max

{
F (x) :

x ∈ R
}
, andM :=

{
x ∈ [0,1) : F (x) = M

}
. An explicit expression for M is given

in terms of the sequence {εn}, and it is shown that the probability distribution µ

of M is purely atomic if p < 1
2
, and is singular continuous if p = 1

2
. In the latter

case, the Hausdor� dimension and the multifractal spectrum of µ are determined.
It is shown further that the set M is �nite almost surely if p < 1

2
, and is topolog-

ically equivalent to a Cantor set almost surely if p = 1
2
. The distribution of the

cardinality of M is determined in the �rst case, and the almost-sure Hausdor�
dimension of M is shown to be (2p− 1)/2p in the second case. The distribution
of the leftmost point of M is also given. Finally, some of the results are extended
to the more general functions

∑
an−1εnφ(2n−1x), where 0 < a < 1.
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1. Introduction and main results

Takagi's nowhere di�erentiable continuous function (see [10]) is given by

T (x) :=
∞∑

n=1

(
1
2

)n−1

φ(2n−1x),

where φ is the �tent map� de�ned by φ(x) = 2 dist (x,Z). It was �rst shown
by Kahane [5] that maxT (x) = 4

3 , and the set of points in [0, 1) where the
maximum is attained is a Cantor set of Hausdor� dimension 1

2 . Moreover,
the maximum points are precisely those numbers x whose binary expansion
x = (0.x1x2x3 . . . )2 satis�es x2j−1 + x2j = 1 for every j ∈ N. In particular,
the leftmost maximum point in [0, 1) is x0 = 1

3 = (0.010101 . . . )2.
The aim of this paper is to study the maxima of the random function

F (x) :=
∞∑

n=1

(
1
2

)n−1

εnφ(2n−1x), x ∈ R,

where {εn}n∈N are independent, identically distributed (i.i.d.) random vari-
ables on some probability space (Ω,A, P) taking values in {−1, 1}. Observe
that every realization of F vanishes at integer x; is 1-periodic and continuous;
and, by a result of Kono [6, Theorem 2], is nowhere di�erentiable.

Let
p := P (ε1 = 1), q := P (ε1 = −1) = 1− p.

The two degenerate cases p = 1 and p = 0 yield F (x) = T (x) and F (x) =
−T (x), respectively. We assume here that 0 < p < 1, and will be interested
in the stochastic behavior of the maximum value

M := max
{

F (x) : x ∈ R
}

,

the set of maximum points on one full period,

M :=
{

x ∈ [0, 1) : F (x) = M
}

,

and the leftmost member of this set,

X0 := minM.

This introduction gives an overview of some of the main results of the
paper; the proofs and related results are developed in later sections.
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DISTRIBUTION OF THE MAXIMA OF RANDOM TAKAGI FUNCTIONS 245

A natural �rst question is how M and X0 are determined by the sequence
{εn}. This can be answered in terms of the �rst passage times of the random
walk {Sn}, where

S0 := 0, and Sn := ε1 + · · ·+ εn, n ∈ N.

Let
τj := inf {n : Sn = j}, j ∈ N,

where the in�mum of an empty set is taken to be +∞.
Theorem 1.1. With the convention that (1/2)∞ ≡ 0, we have

(1) M = 2
∞∑

k=1

(
1
2

)τ2k−1

and X0 =
∞∑

k=1

[(
1
2

)τ2k−1

−
(

1
2

)τ2k
]

.

The second expression shows the generalization of the pattern found in
the leftmost maximum point of Takagi's function: in the binary expansion of
X0, the �rst τ1 digits are 0's, the next τ2 − τ1 digits are 1's, the next τ3 − τ2

are 0's again, and so on.
Since τ2k−1 is odd, Theorem 1.1 implies that M takes values in the set

C :=
{ ∞∑

n=0

ωn4−n : ωn ∈ {0, 1} ∀ n

}
=

{
4
3

∞∑

n=1

ω̂n4−n : ω̂n ∈ {0, 3} ∀ n

}
.

Thus, C is the �middle half� Cantor set on [0, 4
3 ], and dimH C = 1

2 .
Let µ denote the probability distribution of M . That is,

µ(B) := P (M ∈ B), B ∈ Borels (R).

If B = {x}, we shall write µ(x) instead of µ
({x}) . Denote the support of µ

by suppt (µ), and recall that the Hausdor� dimension of µ is de�ned by

dimH µ = inf
{

dimH E : E ∈ Borels (R), µ(E) = 1
}

.

For j ∈ Z+, de�ne

(2) pj :=
1

j + 1

(
2j

j

)
pj+1qj−1.

Theorem 1.2 (The distribution of M). (a) The support of µ is C. In
particular, dimH suppt (µ) = 1

2 .
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(b) If p < 1
2 , then µ is purely atomic, and µ is speci�ed completely by

(3) µ(0) = 1− p

q

and

(4) µ

( k∑

i=1

4−ni

)
= pn1pn2−n1 · · · pnk−nk−1

(
1− p

q

)

for any choice of k ∈ N and integers 0 5 n1 < n2 < · · · < nk.
(c) If p = 1

2 , then µ is singular continuous, and

(5) dimH µ = −p− q

log 4

∞∑

j=1

pj log pj .

The last equation shows that the dimension of µ varies continuously
with p. It is zero when p = 1

2 and when p = 1, and is maximized around
p ≈ .755, at which point dimH µ ≈ .493. This is just slightly below the di-
mension of the support of µ.

In the case p = 1
2 , more information about the measure µ is contained

in its multifractal spectrum, which describes the local scaling behavior of µ.
Let

(6) Kα :=

{
x ∈ R : lim

r↓0
log µ

(
B(x, r)

)

log r
= α

}
, α = 0,

and de�ne δ(α) := dimH Kα. In Section 5, it will be shown that the function
δ(α) has the usual concave shape on some compact interval, and vanishes
outside that interval. Fig. 1 shows the three possible types of behavior. The
case p = 1

2 is unique; the value p = 2
3 is the �rst in a sequence of values of p for

which δ(α) has a jump discontinuity; and the case p = 0.8 illustrates �typical�
behavior. (See Proposition 5.3 below and the discussion that follows it.)

In the next theorem, #M denotes the cardinality of M.
Theorem 1.3 (The size of M). (a) If p < 1

2 , then M is �nite almost
surely, and #M takes values in the set

{
2l(2m − 1), l ∈ Z+, m ∈ N

}
, with

(7) P
[
#M = 2l(2m − 1)

]
=





pm−1

(
1− p

q

)
, l = 0, m ∈ N,

pm

(
p

q

)l (
1− p

q

)
, l = 1, m ∈ N.

Acta Mathematica Hungarica 121, 2008



DISTRIBUTION OF THE MAXIMA OF RANDOM TAKAGI FUNCTIONS 247

(b) If p = 1
2 , then M is a topological Cantor set with probability one, and

dimH M =
p− q

2p
a.s.

Remark 1.4. (i) When p < 1
2 , (7) shows that #M = 2ζ(2ξ − 1), where ζ

and ξ are independent random variables, the distribution of ζ is a mixture of
point mass at 0 and a geometric distribution with parameter 1− (p/q), and
the distribution of ξ is geometric with parameter q.

(ii) From part (a) of Theorem 1.3 we deduce that E(#M)α < ∞ if and
only if α < log2(q/p). In particular, E(#M) < ∞ if and only if p < 1

3 . The
�rst few moments of #M (when they exist) can easily be calculated. For
example, E(#M) = (1− 2p)/(1− p)(1− 3p) when p < 1

3 .

- - -

6

δ(α)

1
2

α α α

p = 1
2

0 1

p = 2
3

.085 .585

p = 0.8

.322 .602

45◦

Fig. 1: The multifractal spectrum of µ: three essentially di�erent cases

The key to proving the above results is to consider a random walk as-
sociated with the slopes of the piecewise linear �nite-stage approximations
of F . This random walk, which moves on the nonpositive integers and has a
re�ecting barrier at 0, is discussed in Section 2. In Section 3 we derive the
�rst expression in Theorem 1.1, prove Theorem 1.2, and show that the con-
ditional distribution of M given that M 5 1

3 is a self-similar measure. This
self-similarity is exploited in Section 4 to recursively compute the moments of
M . For example, when p = 1

2 we obtain that EM = 1/
√

3. Section 5 gives the
complete multifractal spectrum of µ. The proof of Theorem 1.3 is developed
in Section 6. In Section 7 we derive the second expression in Theorem 1.1,
and analyze the distribution of X0. Finally, Section 8 extends some of the
results to functions of the form

∑
an−1εnφ(2n−1x), where 0 < a < 1.
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2. The associated random walk

Let

F0 ≡ 0, Fn(x) :=
n∑

k=1

(
1
2

)k−1

εkφ(2k−1x), n ∈ N.

Put Mn := max Fn(x), and de�ne

Mn :=
{

x ∈ [0, 1] : Fn(x) = Mn

}
.

We can think of Mn as the temporary maximum at stage n, and of Mn as
the set of points where the temporary maximum is attained.

Now de�ne

(8) Rn := max
x∈Mn

lim sup
h→0

Fn(x + h)− Fn(x)
2|h| , n ∈ Z+.

Clearly, Rn 5 0. Furthermore, R0 = 0, and the de�nition of Fn implies that

Rn+1 =

{
−1 if Rn = 0,

Rn + εn+1 if Rn < 0.

Thus, the process {Rn} is a random walk on {. . . ,−2,−1,0}, with a re�ecting
barrier at 0. Note that {Rn} moves parallel to {Sn}, except at those times
when Rn = 0 and εn+1 = 1.

What is the signi�cance of the process {Rn}? Put xn,j := j/2n, j =
0, 1, . . . , 2n. Observe that F (xn,j) = Fn(xn,j) for all n and j. Furthermore,
the graph of Fn consists of line segments joined end-to-end at the points
xn,j . Some of these have an endpoint whose x-coordinate lies inMn. Among
that more select group of line segments, the �attest have slope ±2Rn. Since
F −Fn is periodic with period 2−n, it follows that the maximum of F can be
attained on an interval (xn,j−1, xn,j) if and only if either xn,j−1 or xn,j lies
in Mn, and the slope of the graph of Fn on (xn,j−1, xn,j) is equal to ±2Rn.
When Rn = 0, the graph of Fn �levels o��, and there is a possibility of up-
ward growth at the next step, to be realized if εn+1 = 1. Thus, intuitively,
the magnitude of Rn measures how far the construction of the graph of F is,
after n stages, from being able to make another push upward.

In order to record the times of upward growth, de�ne N0 ≡ 0, and recur-
sively,

(9) Nk := inf {n > Nk−1 : Mn > Mn−1}, k ∈ N.
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Thus, Nk is the kth time of increase of the sequence {Mn}. It is also the kth
time the random walks {Rn} and {Sn} move in opposite directions. From
this relationship between Nk, Rn and Sn, it can be seen that Nk = τ2k−1

for every k, while τ2k = inf {n > Nk : Rn = 0}. Thus, the distribution of the
�rst-passage times {τj} will be particularly useful. Observe that, given that
τj is �nite, τj+1− τj is independent of τj , and has the same distribution as τ1.
From Feller [3, p. 255]:

(10) P (τ1 = 2j + 1) =
1

j + 1

(
2j

j

)
pj+1qj = qpj , j ∈ Z+.

We will also need the distribution of τ2. From (10) and the fact that P(τ1 =
2j + 1) = q P (τ2 = 2j) for j = 1, we obtain that

P (τ2 = 2j) = pj , j ∈ N.

Note that τj is defective when p < 1
2 , with P(τj < ∞) = (p/q)j , j ∈ N.

3. The distribution of M

Since Nk = τ2k−1, we can write

(11) M = lim
n→∞Mn =

∞∑

k=1

(
1
2

)Nk−1

= 2
∞∑

k=1

(
1
2

)τ2k−1

,

which yields the �rst expression in Theorem 1.1.
We now investigate the distribution of M . Note �rst that if ε1 = 1, then

M ∈ [1, 4
3 ]. If ε1 = −1, we get the same graph shifted one unit down and half

a unit to the left. Hence,

(12) µ(B) = (p/q)µ(B − 1), B ⊂
[
1,

4
3

]
.

It su�ces therefore to study the conditional distribution of M given that
ε1 = −1. De�ne the measure µ̃ by

µ̃(B) := P (M ∈ B | ε1 = −1) =
µ(B ∩ I)

µ(I)
, B ∈ Borels (R),

where I := [0, 1
3 ]. De�ne the intervals

Ij :=
[
4−j ,

(
4
3

)
4−j

]
, j ∈ Z+,

and let fj(x) = 4−j(x + 1), x ∈ R, j ∈ N. Thus, fj maps I bijectively to Ij .
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Lemma 3.1. (a) µ̃(0) = max{0, 1− (p/q)2}.
(b) For any Borel set B with 0 6∈ B,

(13) µ̃(B) =
∞∑

j=1

pjµ̃
(
f−1

j (B)
)
.

Proof. Let M̃ be a random variable having µ̃ as its probability distri-
bution. Since (τ1 | ε1 = −1) d= 1 + τ2, it follows from (11) that

M̃
d=

∞∑

k=1

(
1
2

)τ (1)+···+τ (k)

,

where τ (1), τ (2), . . . are i.i.d. random variables having the same distribution
as τ2. Thus (enlarging the probability space if necessary), M̃ has the repre-
sentation

M̃ =
(

1
2

)τ (
1 + M̂

)
,

where τ
d= τ2, M̂

d= M̃ , and τ and M̂ are independent. It follows that

µ̃(0) = P (τ1 = ∞ | ε1 = −1) = P (τ2 = ∞) = max{0, 1− (p/q)2},

and for any Borel set B with 0 6∈ B,

µ̃(B) =
∞∑

j=1

P (τ = 2j) P
(
M̃ ∈ B | τ = 2j

)

=
∞∑

j=1

pj P
(
fj(M̂) ∈ B

)
=

∞∑

j=1

pjµ̃
(
f−1

j (B)
)
. ¤

Proof of Theorem 1.2. Part (a) follows immediately from (11), since
τ2k−1 is odd for every k. Suppose p < 1

2 . Then with probability 1 there is an
index k0 such that Nk = ∞ for every k = k0. Hence by (11), µ gives all its
mass to the dyadic rational points, so µ is purely atomic. By Lemma 3.1, µ̃(0)
= 1− (p/q)2. Now let y =

∑k
i=1 4−ni , where 1 5 n1 < n2 < · · · < nk. Then

y ∈ In1 , so that by (13),

µ̃(y) =
∞∑

j=1

pjµ̃
(
f−1

j (y)
)

= pn1 µ̃
(
f−1

n1
(y)

)
.

Acta Mathematica Hungarica 121, 2008



DISTRIBUTION OF THE MAXIMA OF RANDOM TAKAGI FUNCTIONS 251

Note that f−1
n1

(y) =
∑k

i=2 4−(ni−n1) if k = 2, and f−1
n1

(y) = 0 if k = 1. Thus,
replacing y with y′ =

∑k
i=2 4−(ni−n1), k with k′ = k − 1 and ni with n′i =

ni+1 − n1, and iterating, we eventually obtain

µ̃(y) = pn1pn2−n1 · · · pnk−nk−1

(
1− (p/q)2

)
.

Since µ(y) = qµ̃(y) and q
[
1− (p/q)2

]
= 1− (p/q), (4) follows under the re-

striction that n1 = 1. By (12), it holds when n1 = 0 as well. Likewise, (3)
holds. This proves part (b).

Next, suppose p = 1
2 . In this case P(Nk < ∞ ∀k) = 1, so µ(y) = 0 for

any point y of the form y =
∑k

i=1 4−ni . This leaves points of the form
y =

∑∞
i=1 4−ni . But for each such y there are only countably many possi-

ble sequences {εn}n∈N which yield M = y. Since each such sequence occurs
with probability zero, it follows that µ is nonatomic. Moreover, Lemma 3.1
shows that µ̃ is self-similar, since (13) now holds even if 0 ∈ B. The dimension
of µ̃ (and hence of µ) now follows from the standard dimension formula

(14) dimH µ̃ =

∑∞
j=1 pj log pj∑∞
j=1 pj log cj

,

where
cj :=

∣∣fj(I)
∣∣/|I| = |Ij |/|I| = 4−j , j ∈ N.

(The full details are given in Section 5, as part of the multifractal analysis
carried out there.) This completes the proof of (c), and of the theorem. ¤

4. Moments of M

Using the selfsimilarity of the measure µ̃, the moments of M can be cal-
culated recursively. Let mk := EMk, k ∈ N.

Theorem 4.1. De�ne ρk :=
√

1− 41−kpq, k ∈ N. Then

mk =
4k(p− q + ρk)

2(4k − 1)

[
1 +

k−1∑

i=1

(
k

i

)
1− ρi

2q
mi

]
, k = 1, 2, . . .

(the empty sum being zero). In particular,

EM =
2
3
(
p− q +

√
1− pq

)
.
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Proof. Let

m̃k :=
∫

[0, 1
3 ]

xkdµ̃(x),(15)

ak :=
∞∑

j=0

4−jkµ(Ij), bk :=
∞∑

j=1

4−jkµ̃(Ij).

(In evaluating m̃0, we de�ne 00 ≡ 1, so that m̃0 = 1.) Then, for k = 1,

mk =
∞∑

j=0

∫

Ij

xkdµ(x) =
∞∑

j=0

4−jk
k∑

i=0

(
k

i

)∫

Ij

(4jx− 1)i
dµ(x)

=
∞∑

j=0

4−jkµ(Ij)
k∑

i=0

(
k

i

)∫

[0, 1
3 ]

yidµ̃(y) = ak

k∑

i=0

(
k

i

)
m̃i.

Similarly, m̃k = bk
∑k

i=0

(
k
i

)
m̃i = (bk/ak)mk, for k = 1. Since m̃0 = 1, we ob-

tain the recursive relationship

mk = ak

[
1 +

k∑

i=1

(
k

i

)
bi

ai
mi

]
.

Solving explicitly for mk gives

(16) mk =
ak

1− bk

[
1 +

k−1∑

i=1

(
k

i

)
bi

ai
mi

]
, k = 1.

It remains to calculate ak and bk. Recall that the generating function of τ1

is given by

G(s) :=
∞∑

i=1

P (τ1 = i)si =
1−

√
1− 4pqs2

2qs
.

(See Feller [3, p. 255].) Thus,

ak =
∞∑

j=0

4−jk P (τ1 = 2j + 1) = 2kG(2−k) =
4k(1− ρk)

2q
.

By (15), bk = q−1(ak − p). After some algebra, we obtain

ak

1− bk
=

qak

1− ak
=

q

a−1
k − 1

=
4k(p− q + ρk)

2(4k − 1)
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(where the last step uses the de�nition of ρk), and

bi

ai
=

ai − p

qai
=

1− pa−1
i

q
=

1− ρi

2q
.

Substituting these expressions into (16) completes the proof. ¤

5. The multifractal spectrum of µ

In this section, assume p = 1
2 . We are interested in the local power law

behavior of the measure µ. Rather than considering the sets Kα de�ned by
(6), it is slightly more convenient to consider the sets

(17) K̃α :=

{
x ∈ R : lim

r↓0
log µ̃

(
B(x, r)

)

log r
= α

}
, α = 0.

Of course, dimH Kα = dimH K̃α.
Since µ̃ is self-similar, we expect it to satisfy the multifractal formal-

ism. But this is not quite clear, because the iterated function system (IFS)
{f1, f2, . . . } is in�nite. The multifractal formalism is known to hold in the
in�nite case if instead of considering open balls B(x, r) and letting r ↓ 0, one
considers the basic intervals of level k generated by the IFS and lets k →∞.
(See, for instance, Riedi and Mandelbrot [8].) However, it is much more nat-
ural from a geometric point of view to de�ne K̃α by (17). This may lead to
insurmountable complications in more general settings, but here we are for-
tunate enough that the support of µ̃ is a Cantor set, and hence can be viewed
alternatively as the attractor of a �nite IFS. Since this �nite IFS satis�es a
separation condition that the in�nite IFS lacks, this representation will make
it possible to replace open balls by the basic intervals generated by the IFS.
The price to pay for this bene�t is that some extra care is needed to estimate
the µ̃ measures of these basic intervals, but this will turn out to be a good
trade-o�.

We �rst develop the necessary notation and state the main results of this
section. Recall from Section 3 that cj = 4−j is the contraction ratio of the
map fj . Let D denote the set of all λ ∈ R for which the equation

(18)
∞∑

j=1

pλ
j cβ

j = 1

has a solution β. For λ ∈ D, the solution to (18) is plainly unique; denote it
by β(λ). Observe that β(0) = dimH suppt (µ̃) = 1

2 , and β(1) = 0.
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Proposition 5.1. (a) D = (−∞, 1] if p = 1
2 ; D = R if p > 1

2 .
(b) The function β(λ) is strictly decreasing and strictly convex on D, and

is real-analytic on the interior of D.
As is usual in these problems, we de�ne the Legendre transform β̂ of β by

β̂(α) := inf
λ∈D

{
β(λ) + αλ

}
, α = 0.

Let
uj :=

log pj

log cj
=

log pj

−j log 4
, j ∈ N,

and de�ne
αmin := inf

j∈N
uj , αmax := sup

j∈N
uj .

Theorem 5.2. The multifractal formalism holds, i.e.

dimH K̃α =

{
β̂(α), if α ∈ [αmin, αmax],

0, otherwise.

For j ∈ N, let p∗j denote the value of p for which uj = uj+1. (Thus, for
example, p∗1 = 2

3 , p∗2 = 25
33 , and generally, p∗j ↑ 1 as j →∞.) Put p∗0 = 1

2 .
Proposition 5.3 (evaluation of β̂). (a) αmin = min

{
u1, limj→∞ uj

}

= min
{− log p/ log 2,− log (4pq)/ log 4

}
.

(b) αmax = uj, where j is such that p∗j−1 5 p < p∗j .
(c) For α ∈ (αmin, αmax),

β̂(α) = β
(
λ(α)

)
+ λ(α)α,

where λ(α) is the unique value of λ where dβ/dλ = −α.
(d) β̂(αmin) = 0.
(e) If p 6∈ {p∗j}j∈N

, then β̂(αmax) = 0. If p = p∗j for j = 1, then β̂(αmax)

is equal to the unique number s such that (4−s)j + (4−s)j+1 = 1.
Observe that part (c) implies in the usual way that dβ̂/dα = λ(α) and

d2β̂/dα2 < 0 for αmin < α < αmax. Thus, β̂ is strictly concave on [αmin, αmax],
and has a maximum value of β(0) = 1

2 at the point α where λ(α) = 0.
Notice further that if p > 1

2 , the boundary points αmin and αmax corre-
spond to λ→∞ and λ→−∞, respectively. Thus, the graph of β̂ has vertical
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tangents at αmin and αmax. On the other hand, if p = 1
2 , the point αmin = 0

corresponds to λ = 1, so the graph of β̂ departs from the origin under a 45◦
angle. Finally, one checks easily that in the latter case, αmax = 1. Fig. 1
illustrates the possible shapes of the graph of β̂.

We now turn to the proofs. First, de�ne the region V ⊂ R2 by

V :=
{

(λ, β) : λ log 4pq − β log 4 < 0
}

.

Lemma 5.4. For all λ in the interior of D, we have
(
λ, β(λ)

) ∈ V .
Proof. By Stirling's formula,

(19)
(

2j

j

)
∼ 4j

√
πj

, as j →∞.

Hence, from (2),

(20) pj ³ j−3/2(4pq)j ,

where aj ³ bj means that K−1 < aj/bj < K for all su�ciently large j and
some positive constant K. It follows that

(21) αmin 5 lim
j→∞

uj =
− log 4pq

log 4
.

If there exists j0 such that αmin = uj0 , then

1 =
∞∑

j=1

pλ
j c

β(λ)
j > pλ

j0c
β(λ)
j0

= c
β(λ)+λαmin

j0
,

and consequently,

(22) β(λ) + λαmin > 0.

On the other hand, if no such j0 exists, then αmin = limj→∞ uj , so there
exists j1 ∈ N such that 1 > pjc

−αmin
j > 1

2 for all j = j1. But then

1 =
∞∑

j=j1

pλ
j c

β(λ)
j =

∞∑

j=j1

pλ
j c−λαmin

j c
β(λ)+λαmin

j

>

∞∑

j=j1

min

{(
1
2

)λ

, 1

}
c
β(λ)+λαmin

j ,

which again implies (22). Together, (21) and (22) yield the lemma. ¤
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Proof of Proposition 5.1. Part (a) follows from (20) and cj = 4−j .
To prove (b), note that the function Φ(λ, β) :=

∑∞
j=1 pλ

j cβ
j is �nite and real-

analytic on V . Thus, by Lemma 5.4 and the Implicit Function Theorem, β(λ)
is real-analytic on the interior of D. It follows that, at all λ in the interior
of D, equation (18) can be di�erentiated implicitly twice with respect to λ,
and the di�erentiation and summation may be interchanged. Thus, the usual
formulas for dβ/dλ and d2β/dλ2 apply (e.g. Falconer [2, pp. 287�288]), and
the remaining assertions of part (b) of the proposition follow. ¤

In particular, we have the �inverse relation�

(23) α = −dβ

dλ
=

∑∞
j=1 pλ

j cβ
j log pj∑∞

j=1 pλ
j cβ

j log cj

,

where λ = λ(α). This relationship will be of crucial importance later.
Proof of Proposition 5.3. Put C := log (p/q), and let

vj := (log 4)j(j + 1)(uj+1 − uj), j ∈ N.

Writing

uj = (j log 4)−1

[
log (j + 1)− log

(
2j

j

)
− j log pq − C

]

and using that

(24) log
(

2j + 2
j + 1

)
− log

(
2j

j

)
= log 2 + log (2j + 1)− log (j + 1),

we obtain, after some simpli�cations,

(25) vj = log
(

2j

j

)
− log (j + 1) + C − j

{
log 2 + log (2j + 1)− log (j + 2)

}
.

Hence, using (24) once more and cancelling common terms, we arrive at

vj+1 − vj = (j + 1)
{

log (2j + 1) + log (j + 3)− log (2j + 3)− log (j + 2)
}

= (j + 1) log
(

2j2 + 7j + 3
2j2 + 7j + 6

)
< 0,

so vj is strictly decreasing in j. Further, from (25) and (19) it can be seen
that limj→∞ vj/ log j = −3

2 . Thus, vj is eventually negative. It follows that
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the sequence {uj} is either unimodal or strictly decreasing. This yields parts
(a) and (b) of the proposition. Part (c) follows from the di�erentiability of
β(λ). Noting that the in�mum of uj is attained by at most one j (i.e. j = 1),
and the maximum of uj is attained jointly by j and j + 1 when p = p∗j , parts
(d) and (e) follow essentially as in Cawley and Mauldin [1]. (The slight mod-
i�cations needed to deal with the in�nite sums are straightforward.) ¤

For n ∈ N and i = (i1, . . . , in) ∈ {1, 2}n, let

Ji = Ji1,...,in := ϕi1 ◦ ϕi2 ◦ . . . ◦ ϕin(J),

where J = [0, 1
3 ], ϕ1(x) = x/4 and ϕ2(x) = (1 + x)/4 (so ϕ1 and ϕ2 are the

orientation preserving a�ne maps which map J onto the subintervals [0, 1
12 ]

and [1
4 , 1

3 ] respectively). Thus, the Ji for i ∈ {1, 2}n are the basic intervals at
stage n of the construction of the Cantor set C̃ := C ∩ [0, 1

3 ]. Now, for x ∈ C̃
and n ∈ N, let Jn(x) denote the stage-n interval Ji1,...,in that contains x.
Since there is a gap between J1 and J2, the following useful lemma holds (see
Falconer [2, Lemma 17.5]).

Lemma 5.5. For any (positive and �nite) Borel measure m on R and all
x ∈ C̃,

(26) lim
r↓0

log m
(
B(x, r)

)

log r
= lim

n→∞
log m

(
Jn(x)

)

log
∣∣Jn(x)

∣∣ ,

with either both limits existing or neither.
Note that it is not at all clear whether (26) holds when the intervals

Jn(x) are replaced with the nth stage �basic intervals� of the in�nite IFS
{f1, f2, . . . }. The reason is that there is no minimum gap between the inter-
vals Ii = fi(J), i ∈ N. Hence, we are forced to work with the basic intervals
of the Cantor set C̃ instead.

In what follows, �x α ∈ (αmin, αmax), let λ = λ(α), and let β = β(λ). De-
�ne a probability measure ν on C̃ by the equation

ν =
∞∑

j=1

p̄j(ν ◦ f−1
j ),

where

(27) p̄j := pλ
j cβ

j , j ∈ N.
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For x ∈ C̃, write

x =
∞∑

i=1

ωi4−i, ωi ∈ {0, 1} for i ∈ N.

For k ∈N and x as above, let n(k) denote the number of 1's among ω1, . . . , ωk.
For n ∈ N, put sn := inf

{
k : n(k) = n

}
. Let tn := sn − sn−1, where s0 ≡ 0.

Then {tn} is a sequence of independent, identically distributed random vari-
ables under the measure ν, with ν(t1 = j) = p̄j , j ∈ N. Hence, by the strong
law of large numbers (SLLN),

(28) lim
n→∞

sn

n
= E(ν) s1 =

∞∑

j=1

jp̄j = −(log 4)−1
∞∑

j=1

p̄j log cj , ν-a.s.

Furthermore, the relationship between
{

n(k)
}

and {sn} implies that

(29) n(k)
k

→ 1
E(ν) s1

and
sn(k)

k
→ 1, ν-a.s.

Next, de�ne

rk :=
∞∑

j=k+1

pj , r̄k :=
∞∑

j=k+1

p̄j ,

and let l(k) := sn(k). Observe that

log µ̃
(
Jk(x)

)
=

n(k)∑

i=1

log pti + log rk−l(k),(30)

log ν
(
Jk(x)

)
=

n(k)∑

i=1

log p̄ti + log r̄k−l(k).(31)

Lemma 5.6. limk→∞
log rk−l(k)

k = limk→∞
log r̄k−l(k)

k = 0, ν-a.s.
Proof. If p > 1

2 , we have rk ³ pk ³ k−3/2(4pq)k, by (20). If p = 1
2 , then

rk ³ k−1/2 (by comparison with the integral
∫∞
k x−3/2dx). Similarly, r̄k ³

p̄k ³ k−3λ/2(4pq)λk4−βk. The lemma now follows easily from the fact that(
k − l(k)

)
/k = 1− sn(k)/k → 0, ν-a.s. ¤
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All the preparatory work has been done. Theorem 5.2 will now follow
from Proposition 5.8 below and the following lemma, which has been called
�Volume Lemma�, �Frostman's Lemma� or �Billingsley's Lemma�; see Przy-
tycki and Urba«ski [7, Section 7.6].

Lemma 5.7. Let m be a positive �nite Borel measure on R.
(a) If K ⊂ R is a Borel set satisfying m(K) > 0 and

(32) lim inf
r↓0

log m
(
B(x, r)

)

log r
= δ for all x ∈ K,

then dimH K = δ.
(b) If the lower limit in (32) is equal to δ for m-a.e. x, then dimH m = δ.
Proposition 5.8. (a) ν(K̃α) = 1.
(b) For every x ∈ K̃α, limr↓0 log ν

(
B(x, r)

)
/ log r = β̂(α).

Proof. Note that
∣∣Jk(x)

∣∣ = 1
3 · 4−k, so log

∣∣Jk(x)
∣∣ ∼ −k log 4 as k →∞.

Thus, by (30) and Lemma 5.6, we have for ν-almost every x,

lim
k→∞

log µ̃
(
Jk(x)

)

log
∣∣Jk(x)

∣∣ = lim
k→∞

∑n(k)
i=1 log pti + log rk−l(k)

−k log 4

= −(log 4)−1 lim
k→∞

n(k)
k

(
1

n(k)

n(k)∑

i=1

log pti

)
=

∑∞
j=1 p̄j log pj∑∞
j=1 p̄j log cj

= α.

The third equality follows from (28), (29), and SLLN applied to the random
variables {log pti}i∈N, which are i.i.d. under ν. The last equality follows from
(23) and (27). Thus, part (a) follows using Lemma 5.5.

To prove part (b), start by writing

log ν
(
Jk(x)

) − λ log µ̃
(
Jk(x)

)
(33)

= log r̄k−l(k) − λ log rk−l(k) − (β log 4)l(k),

where we have used (27), (30), (31) and the fact that

n(k)∑

i=1

log cβ
ti

= −β

n(k)∑

i=1

ti log 4 = −(β log 4)l(k).

Assume p > 1
2 ; the case p = 1

2 is very similar. Choose a number K > 1 such
that for each j ∈ N,

(34) K−1 < rj · j3/2(4pq)−j < K
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and

(35) K−1 < r̄j · j3λ/2(4pq)−λj4βj < K

(see the proof of Lemma 5.6). Put C :=
( |λ|+ 1

)
log K. Taking logarithms

in (34) and (35), we obtain

| log r̄j − λ log rj + βj log 4| < C, for all j ∈ N.

Now substitute j = k − l(k) in this last inequality and conclude that

lim
k→∞

log r̄k−l(k) − λ log rk−l(k) − (β log 4)l(k)
−k log 4

= β.

Thus, (33) and the de�nition of K̃α imply

lim
k→∞

log ν
(
Jk(x)

)

log
∣∣Jk(x)

∣∣ = λα + β = β̂(α), for all x ∈ K̃α.

Another application of Lemma 5.5 completes the proof. ¤
Proof of Theorem 5.2. For α ∈ (αmin, αmax), the dimension of K̃α fol-

lows from Proposition 5.8 and Lemma 5.7. For all other values of α the dimen-
sion of K̃α follows exactly as in the �nite case; see Cawley and Mauldin [1].
¤

Finally, Proposition 5.8 and Lemma 5.7 imply that dimH ν = β̂(α). Tak-
ing λ = 1 we obtain dimH µ̃ = β̂(α) = α. Thus, (14) follows from (23).

6. The size of M
In this section we prove Theorem 1.3. Suppose �rst that p < 1

2 .
Proof of Theorem 1.3, Part (a). Recall the de�nitions and interpre-

tation of the random walks {Sn} and {Rn} from Sections 1 and 2, respectively.
For m ∈ Z+, let Am be the event that the walk {Rn} returns to zero exactly
m times, and (if m = 1) each of the returns is followed by a down-step of the
walk {Sn} on the next step. For k ∈ N, let Bk be the event that {Rn} re-
turns to zero at least k times, and the kth return is the �rst that is followed
immediately by an up-step of {Sn}. Note that after each visit to 0 (including
the one at time 0), the random walk {Rn} automatically falls back to −1,
and the probability that it will return to 0 again is p/q < 1. Thus,

P(Am) =
(

p

q
· q

)m (
1− p

q

)
= pm

(
1− p

q

)
, m ∈ Z+,
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and
P(Bk) =

(
p

q
· q

)k−1

· p

q
· p =

pk+1

q
, k ∈ N.

Taken together, the Am's and Bk's form a collection of disjoint sets whose
union is {Rn = 0 �nitely often}, a set of probability 1.

Let m ∈ Z+, and suppose that the event Am occurs. We may assume
without loss of generality that ε1 = 1. (If ε1 = −1, we get the same graph
shifted one unit down and half a unit to the left, and by the periodicity of F
this does not a�ect the size of M.) If the mth and last return to 0 happens
at time n, then Mn consists of 2m dyadic closed intervals of length 2−n, two
of which are joined together at the point x = 1

2 . (Fig. 2 illustrates this for
the case m = 2, n = 4.) Since εn+1 = −1 and the walk {Rn} does not return
to 0 again, the maximum points of F are precisely the endpoints of these
intervals. Hence #M = 2m+1 − 1.

Next, let k ∈ N, and suppose that Bk occurs. If the kth return to zero
happens at time n, then, as above, Mn consists of 2k dyadic intervals of
length 2−n. But now, since εn+1 = 1, the graph of Fn+1 is topped by 2k

�tents� over these 2k intervals. Thus #M = 2kN , where N is a random vari-
able having the same distribution as #M. In particular, #M is even.

From the considerations in the last two paragraphs, it follows that #M
takes values in the set

{
2l(2m − 1) : l ∈ Z+, m ∈ N

}
, with

(36) P(#M = 2m − 1) = P (Am−1) = pm−1

(
1− p

q

)
,

and for l = 1,

P
[
#M = 2l(2m − 1)

]
=

l∑

k=1

P (Bk) P
[
#M = 2l(2m − 1) | Bk

]
(37)

=
l∑

k=1

q−1pk+1 P
[
#M = 2l−k(2m − 1)

]
.

Fix m, and let aj := P
[
#M = 2j(2m − 1)

]
, j ∈ Z+. Then (37) gives

al =
p

q

l∑

k=1

pkal−k =
p

q

l−1∑

j=0

pl−jaj .

Taking l = 1 gives a1 = q−1p2a0, while for l = 2, comparison of the above
summation with the analogous one for al−1 gives

al = p

(
p

q

l−2∑

j=0

pl−j−1aj +
p

q
al−1

)
= p

(
1 +

p

q

)
al−1 =

p

q
al−1.
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Combining these results with (36) yields the formulas in (7). ¤
Fig. 2 illustrates the above ideas. In the �gure, ε1 = 1, ε2 = 1, ε3 = −1,

and ε4 = 1. The graph of F3 shows that it is possible to have 22− 1 = 3 max-
imum points. The graph of F4 has four �plateaus� over the intervals [1

4 , 5
16 ],

[ 7
16 , 1

2 ], [1
2 , 9

16 ] and [11
16 , 3

4 ]. There are now two possibilities for the next stage:
if ε5 = 1, the plateaus are replaced with small �tents� and #M5 = 4 (after
which the construction �starts over� at a smaller scale). But if ε5 = −1, the
plateaus are replaced by �dents� and #M5 = 7 = 23 − 1.

-

61

F1

0 1
-

61

0 1

F2

-

61

0 1

F3

-

61

0 1

F4

Fig. 2. The �rst four stages in the construction of F , for a realization of {εn}
with ε1 = 1, ε2 = 1, ε3 = −1, and ε4 = 1

We now proceed to the case p = 1
2 . Let d := (p− q)/2p; we aim to show

that dimH M = d almost surely.
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For k ∈ N, let Tk be the kth time n for which the graph of Fn has one or
more �plateaus�. More precisely, de�ne T0 ≡ 0, and recursively,

Tk := inf {n > Tk−1 : Mn contains an interval}
= inf {n > Tk−1 : Rn = 0}, k = 1.

Recall the de�nition of generalized Hausdor� measure: for an increasing
function h : (0, ε) → (0,∞), a Borel set E ⊂ R and a number δ with 0 < δ
< ε,

Hh
δ (E) := inf

∞∑

i=1

h
( |Ui|

)
,

where the in�mum is over all covers {Ui}∞i=1 of E by open intervals of length
|Ui| < δ (such covers are called δ-covers); and Hh(E) := limδ↓0Hh

δ (E).
Lemma 6.1. For any increasing function h : (0, ε) → (0,∞),

1
4

lim inf
k→∞

2kh
(
2−Tk

)
5 Hh(M) 5 lim inf

k→∞
2kh

(
2−Tk

)
a.s.

Proof. Consider a realization of {εn}n∈N such that τj < ∞ for every
j ∈ N. This event has probability 1 when p = 1

2 . It implies that Tk < ∞ for
all k, and M > Mn for every n. Of course Tk ↑ ∞.

For k ∈N, let Ek := MTk
, and notice that Ek is the union of 2k nonover-

lapping dyadic intervals of length 2−Tk . Call these the intervals of level k, and
label them, from left to right, by Ik,j (j = 1, . . . , 2k). Clearly, the eventual
maximum of F can occur only on one of these (and then on all) 2k inter-
vals. Essentially, at time Tk the construction of F starts over on a smaller
scale, with 2k identical copies side by side constructed over the subintervals
Ik,j . It follows that M =

⋂∞
k=1 Ek, Ek+1 ⊂ Ek, and Ek+1 ∩ Ik,j = Ik+1,2j−1

∪ Ik+1,2j . (In fact, the intervals Ik+1,2j−1 and Ik+1,2j lie adjacent to the center
of Ik,j if εTk+1 = 1, and are adjacent to the left and right endpoints of Ik,j if
εTk+1 = −1.)

(i) The upper bound. Given δ > 0, there exists k ∈N such that 2−Tk < δ,
and the 2k intervals Ik,j (j = 1, . . . , 2k) cover M. Thus,

Hh(M) 5 lim inf
k→∞

2kh
(
2−Tk

)
.

(ii) The lower bound. Fix 0 < δ < ε, and let U be a δ-cover ofM by open
intervals. SinceM is compact, we may assume that U is �nite. Next, for any
interval U there is a smallest integer n such that U contains a closed dyadic
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interval of length 2−n; moreover, U intersects at most four dyadic intervals
of this length. Since h is increasing, it follows that there is a �nite δ-cover J
of M by closed dyadic intervals such that

(38)
∑

U∈U
h
( |U |) = 1

4

∑

J∈J
h
( |J |) .

By removing intervals in the collection J that do not intersect M and by
replacing each interval J in J with the smallest dyadic closed subinterval I
of J such that (J\I) ∩M = ∅, we may assume that J is a subcollection of
the intervals Ik,j (k ∈N, j = 1, . . . , 2k), with no intervals being repeated and
no interval in J being a subset of another.

Let l be the largest integer such that J includes an interval of level l, and
let k be the next largest, so k < l. If Il,j ∈ J , then J cannot include the kth
level interval, say Ik,i, of which Il,j is a subset; hence all 2l−k of the lth level
intervals contained in Ik,i are in J . It follows that if 2kh

(
2−Tk

)
5 2lh

(
2−Tl

)
,

then upon replacing all intervals of level l in J with the intervals of level k
that contain them, the sum

∑
J∈J h

( |J |) will not increase. If on the other
hand, 2kh

(
2−Tk

)
> 2lh

(
2−Tl

)
, then upon replacing each kth level interval

in J with the collection of its descendants at level l, the sum
∑

J∈J h
( |J |)

will decrease. Either way, we can replace J with a collection J ′ that still
covers M, but that includes intervals of strictly fewer levels than J , while∑

J∈J ′ h
( |J |) 5

∑
J∈J h

( |J |) . After �nitely many iterations of this proce-
dure, we will be left with a collection J ∗ whose intervals coverM and are all
of the same level, say l. But then J ∗ = {Il,j : j = 1, . . . , 2l}, and therefore,

(39)
∑

J∈J
h
( |J |) =

∑

J∈J ∗
h
( |J |) = 2lh

(
2−Tl

)
= inf

k: 2−Tk<δ
2kh

(
2−Tk

)
.

It follows from (38) and (39) that
∑

i∈I
h
( |Ui|

)
= 1

4
inf

k: 2−Tk<δ
2kh

(
2−Tk

)

and hence,

Hh(M) = 1
4

lim
δ↓0

inf
k: 2−Tk<δ

2kh
(
2−Tk

)
=

1
4

lim inf
k→∞

2kh
(
2−Tk

)
. ¤

Proof of Theorem 1.3, Part (b). Note that Tk permits the natural
decomposition Tk = σ1 + · · ·+ σk, where σ1, σ2, . . . are i.i.d. with the same
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distribution as T1. Clearly, σ1
d= 1+ τ1. Hence Eσ1 = 1+E τ1 = 1+1/(p− q)

= 2p/(p− q) = 1/d if p > 1
2 , and Eσ1 = ∞ if p = 1

2 . By the SLLN it follows
that almost surely,

(40) lim
k→∞

k−1Tk =





d−1, if p >
1
2

∞, if p =
1
2
.

Consider the case p > 1
2 . If s < d, choose η > 0 such that s + η < d. Then,

using (40),
1− sTk/k > 1− (d− η)Tk/k → η/d,

so
lim inf
k→∞

2k
(
2−Tk

) s
= lim inf

k→∞
(
21−sTk/k

)k = lim inf
k→∞

(
2η/2d

)k = ∞.

Similarly, if s > d, we can choose η > 0 such that s− η > d. Then
1− sTk/k < 1− (d + η)Tk/k → −η/d,

so
lim inf
k→∞

2k
(
2−Tk

) s
= lim inf

k→∞
(
21−sTk/k

)k 5 lim inf
k→∞

(
2−η/2d

)k = 0.

Hence, by Lemma 6.1 applied to h(t) = ts, dimH M = d almost surely.
Finally, if p = 1

2 , then Tk/k →∞ a.s., and so lim infk→∞
(
21−sTk/k

)k = 0
for any positive s. Thus, dimH M = 0 almost surely. ¤

Remark 6.2. For the case p > 1
2 , the law of the iterated logarithm (LIL)

makes a more precise statement possible. Let A := Eσ1 = 2p/(p− q), and
B := Varσ1. It is easily veri�ed that B = 4pq/(p− q)3. By the LIL,

(41) lim sup
n→∞

Tn −An√
2Bn log log Bn

= 1 a.s.

Since Tn/n → d−1 a.s., this suggests de�ning the gauge functions

hα(t) := td exp{αp−1(q log 2)1/2( log (1/t) log log log (1/t)
)1/2},

0 < t < e−e. After some careful analysis, it follows from (40), (41) and
Lemma 6.1 that almost surely,

Hhα(M) =

{
0, if α < 1

∞, if α > 1.

(The somewhat messy details are omitted.) In particular, taking α = 0 shows
that Hd(M) = 0 almost surely.
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7. The leftmost point of M
We consider now the random variable X0 = minM. Our �rst goal is to

verify the second expression in Theorem 1.1. To this end, de�ne

X
(n)
0 := minMn, n ∈ N.

Thus, X
(n)
0 is the leftmost maximum point of Fn in [0, 1]. It is clear that

X0 = limn→∞X
(n)
0 .

Recall that τ1 = inf {n : Mn > 0}. The portion of the graph of Fτ1 above
the x-axis consists of one or more �tents� of equal height. The leftmost such
�tent� spans the interval [0, 2−τ1+1] of the x-axis; more precisely,

Fτ1(x) =
(

1
2

)τ1−1

φ(2τ1−1x), 0 5 x 5 2−τ1+1.

It follows that X
(τ1)
0 = 2−τ1 . (Recall the convention 2−∞ = 0.)

Next, observe that the �rst time m > τ1 for which Rm = 0 is τ2, and the
graph of Fτ2 has a plateau above the interval

[
2−τ1 − 2−τ2 , 2−τ1

]
. Hence

X
(τ2)
0 = 2−τ1 − 2−τ2 .

After time τ2, the construction starts anew (probabilistically speaking), with
the interval

[
2−τ1 − 2−τ2 , 2−τ1

]
taking the place of [0, 1]. We therefore obtain

X
(τ2k)
0 =

k∑

j=1

[(
1
2

)τ2j−1

−
(

1
2

)τ2j
]

, for k ∈ N,

and letting k →∞ yields the second expression in Theorem 1.1.
Let ν denote the probability distribution of X0. De�ne the intervals

J :=
[
0,

1
2

]
, Jk := [4−k, 2 · 4−k], k ∈ N,

and let Ψk be the orientation reversing a�ne map of J onto Jk; that is,
Ψk(x) = 2 · 4−k(1− x), k ∈ N. Let πk := P (τ1 = 2k − 1), k ∈ N.

Theorem 7.1. (a) The measure ν satis�es

(42) ν =
(

1− p

q

)+

δ{0} +
∞∑

k=1

πk(ν ◦Ψ−1
k ).

Acta Mathematica Hungarica 121, 2008



DISTRIBUTION OF THE MAXIMA OF RANDOM TAKAGI FUNCTIONS 267

(b) dimH suppt (ν) = 1− log
(√

5− 1
)
/ log 2 ≈ .6942.

(c) If p < 1
2 , then ν is purely atomic. The atoms of ν are 0 and the

points xi1···ir := Ψi1 ◦ . . . ◦Ψir(0), where r ∈N and i1, . . . , ir ∈N. Moreover,
ν(0) = 1− (p/q), and ν(xi1···ir) = πi1 · · ·πir

(
1− (p/q)

)
.

(d) If p = 1
2 , then ν is singular continuous, and

(43) dimH ν = 2q dimH µ + (p− q)
(−p log p− q log q

log 2

)
.

Notice that 2q + (p− q) = 1. Hence (43) expresses the dimension of ν
as a weighted average of the dimension of µ and the �entropy dimension�
(−p log p− q log q)/ log 2. The appearance of dimH µ in this formula is not
surprising if one compares the expressions in (1). However, the author does
not know a simple intuitive explanation for the exact form of (43).

Proof of Theorem 7.1. In view of (1) and since τ1, τ2− τ1, τ3− τ2, . . .
are i.i.d., we can write

X0 =
(

1
2

)τ1

(1− X̂0),

where X̂0
d= X0, and τ1 and X̂0 are independent. It follows that

ν(0) = P (X0 = 0) = P (τ1 = ∞) = (1− p/q)+,

and for any Borel set B with 0 6∈ B,

ν(B) =
∞∑

k=1

P (τ1 = 2k − 1) P (X0 ∈ B | τ1 = 2k − 1)

=
∞∑

k=1

πk P
(
Ψk(X̂0) ∈ B

)
=

∞∑

k=1

πkν
(
Ψ−1

k (B)
)
.

This proves part (a).
To obtain the dimension of the support of ν, observe that suppt (ν) is the

attractor of the IFS {Φ1, Φ2}, where

Φ1(x) := x/4, Φ2(x) := (1− x)/2.

(Φ1 and Φ2 map J onto the subintervals [0, 1
8 ] and [1

4 , 1
2 ] respectively, with

Φ2 reversing the orientation.) To understand this, it is su�cient to notice
that [1

4 , 1
2 ] = J1, [0, 1

8 ] is the smallest closed interval containing the union
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E :=
⋃∞

k=2 Jk ∪ {0}, and 4E = E ∪ J1. Since {Φ1, Φ2} satis�es the open set
condition, dimH suppt (ν) is the number s such that (1

4)
s +(1

2)
s = 1. Solving

for s yields statement (b).
Suppose now that p < 1

2 . Then with probability one there exists j ∈ N
such that τj = ∞, so X0 is a dyadic rational point. Hence ν is purely atomic.
The probabilities ν(xi1···ir) follow easily from (42).

Finally, suppose p = 1
2 . Then, by a reasoning analogous to that in the

proof of Theorem 1.2, ν is continuous. By part (a), ν is self-similar; and since
the intervals Jk are pairwise disjoint, Theorem 4.1 of Hanus et al. [4] yields

(44) dimH ν =
∑∞

k=1 πk log πk∑∞
k=1 πk log tk

,

where tk := |Jk|/|J | = 2(4−k), and the expression is interpreted as 0 when
the denominator is −∞. Note that πk = qpk−1 for k = 2, and π1 = p. Thus,

∞∑

k=1

πk log πk = p log p +
∞∑

k=2

(qpk−1) log (qpk−1)(45)

= p log p + q log q + q
∞∑

j=1

pj log pj .

Finally, since log tk = −(log 2)(2k − 1), we have

(46)
∞∑

k=1

πk log tk = −(log 2) E τ1 =





− log 2/(p− q) if p >
1
2

−∞ if p =
1
2
.

The dimension formula (43) now follows from (5), (44), (45) and (46). ¤

8. The functions ∑
an−1εnφ(2n−1x)

It seems natural to try and generalize the work of the preceding sections
to the random functions

F (x) :=
∞∑

n=1

an−1εnφ(2n−1x),
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where a is a constant with 0 < a < 1. Note that by Theorem 2 of Kono [6],
F is absolutely continuous if a < 1

2 , and F is nowhere di�erentiable if a > 1
2 .

Put M := maxF (x), let Fn(x) :=
∑n

k=1 ak−1εkφ(2k−1x), and rede�neM,
µ, Mn, and Mn accordingly. While this case is in general more di�cult to
analyze, some interesting things can nonetheless be said. We �rst state the
main results, and then develop the proofs. In what follows, let λ := 2a.

Theorem 8.1. Suppose a < 1
2 . Then µ is purely atomic, and M is �nite

almost surely. If in fact a 5 1
4 , then P(M = 1) = p = 1− P (M = 0), and

#M = 1.
For some particular values of a in (1

4 , 1
2), the distributions of M and #M

can be obtained completely.
Theorem 8.2. Suppose λ satis�es the equation

∑r
i=1 λi = 1, where r = 2.

(Note that this automatically implies 1
4 < a < 1

2 .) Write z := ar+1. Then
(a) The support of µ is the Cantor set

Cr :=
{ ∞∑

n=0

ωnzn : ωn ∈ {0, 1} for all n

}
,

and dimH Cr = − log 2/ log z.
(b) EM = p/(1− prz).
(c) The measure µ is speci�ed completely by

µ(0) = q(1− pr)/(1− prq),

and

µ

( k∑

i=1

zni

)
= (prq)nk

(
p

q

)k

µ(0)

for any choice of k ∈ N and integers 0 5 n1 < n2 < · · · < nk.
(d) The distribution of #M is given by

P
[
#M = 2l(2m − 1)

]
=

{
(prq)m−1(1− pr), l = 0, m ∈ N,

prl+1(prq)m−1(1− pr), l = 1, m ∈ N.

(e) E(#M)α < ∞ if and only if p < 2−α/r. In particular, if p < 2−1/r,
then

E(#M) =
1− pr

(1− 2pr)(1− prq)
.

Observe that λ in Theorem 8.2 is a root of a polynomial with coe�cients
±1 only. In general, let P(−1, 1) denote the set of all polynomials f : R→ R
of the form f(x) =

∑m
i=0 ηix

i, where m ∈ Z+ and η0, . . . , ηm ∈ {−1, 1}.
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Theorem 8.3. Suppose a > 1
2 . Then:

(a) With probability one, Mn < M for every n.
(b) If f(λ) 6= 0 for every f ∈ P(−1, 1), then #M = 2 almost surely.
(c) If 1 + λ + · · ·+ λr−1 = λr for some r = 2, then, with ρ := qr−1p,

P(#M = 2l) = ρl−1(1− ρ), l ∈ N.

Part (a) seems to suggest that µ should be continuous when a > 1
2 . How-

ever, it seems di�cult to prove that µ does not give positive mass to possible
proper limit points of the sequence {Mn}. If this can be ruled out, then a
natural next question is for which values of a in (1

2 , 1) the measure µ is in
fact absolutely continuous. Some useful techniques for attacking this ques-
tion might come from the study of Bernoulli convolutions, where absolute
continuity is a central problem, and polynomials with coe�cients ±1 play an
important role. (See Solomyak [9].)

We now turn to the proofs. De�ne Rn as in (8). Then R0 = 0 and
R1 = −1 as before, but for n = 1 we have:

εn+1 = 1 ⇒
{

Rn+1 = −|Rn + λn|,
Mn+1 = Mn + 2−n(Rn + λn)+,

(47)

εn+1 = −1 ⇒
{

Rn+1 = Rn − λn,

Mn+1 = Mn.
(48)

It follows that for every n,

(49) Rn ∈
{

f(λ) : f ∈ P(−1, 1), deg (f) = n− 1
}

.

Call n ∈ N a critical moment if Rn > −λn, and a renewal moment if
Rn = 0. Observe from (47) and (48) that Mn+1 > Mn if and only if n is a
critical moment and εn+1 = 1. Every renewal moment is plainly a critical
moment.

Lemma 8.4. The conclusions in the following statements hold almost
surely.

(a) If a 5 1
4 , no critical moments occur.

(b) If 1
4 < a < 1

2 , at most �nitely many critical moments occur.
(c) If a > 1

2 , in�nitely many critical moments occur.
Proof. (a) If a 5 1

4 , then λ 5 1
2 , and so for each n ∈ N,

Rn 5 −1 + λ + λ2 + · · ·+ λn−1 5 −λn.
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(b) Suppose 1
4 < a < 1

2 , so 1
2 < λ < 1. Let n0 be an integer such that

λn0 < 1
2 . Note that

−(
1 + λ + · · ·+ λn0−1

)
+

(
λn0 + λn0+1 + . . .

)
=

2λn0 − 1
1− λ

< 0.

Thus, if for some k, εk+1 = εk+2 = · · · = εk+n0 = −1, then we have for all
n = k + n0,

Rn + λn 5 Rk + λk[−
(
1 + λ + · · ·+ λn0−1

)
+ λn0 + · · ·+ λn−k] < 0,

since Rk 5 0. Hence no critical moments occur after time k +n0. Since p < 1,
such a k exists with probability one.

(c) Finally, let a > 1
2 , so that λ > 1. Let n0 be an integer such that λn0

= 2. Then for every k,

Rk + λk
(
1 + λ + · · ·+ λn0−1

)

= −(
1 + λ + · · ·+ λk−1

)
+ λk

(
1 + λ + · · ·+ λn0−1

)

= (λ− 1)−1[λk(λn0 − 1)− (λk − 1)
]

= (λ− 1)−1[λk(λn0 − 2) + 1
]

> 0.

So if εk+1 = εk+2 = · · · = εk+n0 = 1, there will be an index j < n0 such that

Rk+j + λk+j = Rk + λk(1 + λ + · · ·+ λj) > 0,

and then k + j is a critical moment. But such �positive runs� of length n0

happen in�nitely often with probability one. ¤
Proof of Theorem 8.1. Suppose a < 1

2 . By Lemma 8.4, at most
�nitely many critical moments occur. Hence with probability one, M = Mn

for some n ∈ N. Since Mn has only �nitely many possible values, it fol-
lows that µ gives all its mass to a countable set of points. Thus, µ is purely
atomic. That M is �nite a.s. follows since in particular, P(Rn = 0 in�nitely
often) = 0.

If a 5 1
4 , then no critical moments occur, so M = M1 ∈ {0, 1}, and F has

a unique maximum point in [0, 1). ¤
Lemma 8.5. Let λ be the unique positive root of the polynomial f(x)

= 1−∑r
i=1 xi, where r = 2. Then for any polynomial g ∈ P(−1, 1) with con-

stant term 1, we have either g(λ) > 0, or else g − f is divisible by xr+1. In
particular, any polynomial g ∈ P(−1, 1) having λ as a root must have f as a
factor.
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Proof. Let n denote the degree of g. If n 5 r, then

g(λ) = 1− λ− λ2 − · · · − λn = 1− λ− λ2 − · · · − λr = 0,

and g(λ) = 0 if and only if g = f . If n > r, then either g(x) = f(x)+xr+1h(x)
for some h ∈ P(−1, 1), or else g and f di�er in their coe�cient of xj for some
j 5 r. But in the latter case,

g(λ) = f(λ) + 2λj −
∞∑

i=r+1

λi = 2λj − λr+1

1− λ

= 2λr − λr+1

1− λ
= λr

(
2− 3λ

1− λ

)
> 0,

since f(λ) = 0 implies that λ < 2
3 . ¤

Proof of Theorem 8.2. Let λ satisfy the given equation. We claim
that the only critical moments are renewal moments, and these are necessar-
ily integer multiples of r + 1. Clearly, r + 1 can be a renewal moment, since
if ε2 = · · · = εr+1 = 1, then Rr+1 = −1 + λ + λ2 + · · ·+ λr = 0.

On the other hand, if εk+1 = −1 for some 1 5 k 5 r, then for each n ∈N,
Rn + λn = −g(λ) for a polynomial g satisfying the hypothesis of Lemma 8.5.
Moreover, with f de�ned as in Lemma 8.5, g di�ers from f in its coe�cient
of xk, so that g − f is not divisible by xr+1. Hence Rn + λn = −g(λ) < 0.

It follows that the �rst critical moment, if any, must occur at time n = r+
1, and this will be a renewal moment. After this, the process {Rn} essentially
starts over, albeit it with an extra factor λr+1. The claim follows.

Observe next that if k(r + 1) is a renewal moment and εk(r+1)+1 = 1,
then the increment in the temporary maximum is ak(r+1) = zk. Thus, the
set of possible values of M is the set Cr given in part (a). The calculation of
dimH Cr is routine.

For part (b), write M =
∑∞

k=0 ωkz
k, where ωk ∈ {0, 1} for all k. Note

that for k = 1, ωk = 1 if and only if εi = 1 for all j(r + 1) + 2 5 i 5 (j +
1)(r + 1), j = 0, . . . , k − 1, and εk(r+1)+1 = 1. (The values of εj(r+1)+1 for
j = 0, . . . , k− 1 do not a�ect ωk.) Clearly, ω0 = 1 if and only if ε1 = 1. Thus,

P(ωk = 1) = pkr+1, k = 0, 1, 2, . . . ,

and

EM =
∞∑

k=0

E(ωk)zk =
∞∑

k=0

pkr+1zk =
p

1− prz
.
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To prove part (c), de�ne Nk (k ∈N) as in (9). Since N1− 1 (if �nite) is a
renewal moment, N1 takes values in

{
k(r + 1) + 1, k ∈ Z+

} ∪ {∞}. Observe
that N1 = k(r +1)+ 1 exactly when the conditions for ωk = 1 above are met,
and in addition, εj(r+1)+1 = −1 for j = 0, 1, . . . , k − 1. Thus,

P
[
N1 = k(r + 1) + 1

]
= (qpr)kp, k ∈ Z+,

and it follows that

µ(0) = P (N1 = ∞) = 1−
∞∑

k=0

(qpr)kp = 1− p

1− prq
=

q(1− pr)
1− prq

.

Observe next that, given that Nk is �nite, Nk+1 −Nk is independent
of Nk, and

P
[
Nk+1 −Nk = j(r + 1) | Nk < ∞]

= (prq)j−1pr+1

= q−1 P
[
N1 = j(r + 1) + 1

]
, j ∈ N.

Thus, if y =
∑k

i=1 zni where k ∈ N and 0 5 n1 < n2 < · · · < nk, we obtain

µ(y) = P
[ k⋂

i=1

{
Ni = ni(r + 1) + 1

} ∩ {Nk+1 = ∞}
]

= P
[
N1 = n1(r + 1) + 1, N2 −N1 = (n2 − n1)(r + 1), . . . ,

Nk −Nk−1 = (nk − nk−1)(r + 1), Nk+1 −Nk = ∞]

= (qpr)n1p

[ k−1∏

i=1

{
(prq)ni+1−ni−1pr+1

}]
q−1µ(0) = (prq)nk

(
p

q

)k

µ(0).

The proof of part (d) is similar to the proof of Theorem 1.3 (a). The only
signi�cant di�erence is that now each return of Rn from −1 to 0 happens
with probability pr (instead of p/q), since r consecutive up-steps are needed.

Finally, part (e) follows from (d) by routine calculation. ¤
Proof of Theorem 8.3. Suppose a > 1

2 . By part (c) of Lemma 8.4,
there are in�nitely many critical moments. But given that n is a critical
moment, Mn+1 > Mn with the �xed probability p > 0. Hence Mn+1 > Mn

in�nitely often with probability one, proving statement (a).
For (b), note �rst that by the symmetry of F on [0,1] there will be at least

two maximum points as soon as two increments in Mn occur; and this hap-
pens with probability 1 by the foregoing argument. In order for there to be
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more than two maximum points, there must be some n = 1 for which Rn = 0.
By (49) this can happen only if λ is a root of a polynomial in P(−1, 1).

The proof of (c) is based on Lemma 8.5, and uses reciprocal polynomials.
For a polynomial f of degree n, de�ne a polynomial f̂ by f̂(x) = xnf(1/x).
Note that the mapping f 7→ f̂ is multiplicative, maps P(−1, 1) bijectively
into itself, and is its own inverse; that is, ˆ̂

f = f .
Now let λ satisfy the hypothesis of part (c). Then f(λ) = 0, where f(x)

= 1+x+ · · ·+xr−1−xr. Since f̂(x) = xr +xr−1 + · · ·+x− 1, it follows that
λ̂ := 1/λ satis�es the hypothesis of Lemma 8.5; that is,

∑r
i=1 λ̂i = 1.

Suppose g is another polynomial in P(−1, 1) having λ as a root. Then ĝ

has λ̂ as a root, and repeated application of Lemma 8.5 yields that ĝ must
be of the form

ĝ(x) = f̂(x)(± 1± xr+1 ± . . .± xm(r+1)) =: f̂(x)h(x),

for some m ∈ Z+. But then g(x) = f(x)ĥ(x), so that g must be of the form

g(x) = f(x)(± 1± xr+1 ± . . .± xm(r+1)).

Thus, deg (g) is one less than a multiple of r + 1, and (49) implies that the
renewal moments can only be multiples of r + 1. By part (a), #M = 2l if
and only if there are exactly l − 1 renewal moments. In order for this to
happen, the sequence ε1 = arbitrary, ε2 = −1, . . . , εr = −1, εr+1 = 1 must be
repeated exactly l − 1 times. Since this sequence has probability ρ = qr−1p,
part (c) of the theorem follows. ¤
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