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Abstract

This note considers the average-optimal expected return of two players observing indepen-
dent random variables X, ..., X, whose distributions are generated at random. One player,
the pseudo prophet, knows the distributions prior to observing the random variables. The
other player, the gambler, has no such foresight. Sharp difference and ratio comparisons of the

two players’ returns are given.
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1 Introduction

A classical problem in optimal stopping theory is to compare the optimal expected return of an
ordinary gambler to that of a player with complete foresight. Such comparisons are called prophet
inequalities, and a vast literature exists about them. See Hill and Kertz (1992) for a survey.

This note considers a related problem in which both players have less than complete foresight
into the future. Specifically, let X7, ..., X, be independent random variables, observed sequentially
by two players. Assume that the distributions of the variables are known in advance to the first
player, but unknown to the second. The first player will be called a “pseudo prophet”, since he has
partial, but not complete, foresight into the future. The second player will be referred to as the
“gambler.” Assume that the gambler adopts a stop rule that will maximize his expected return £ X,
on the average (in a sense to be made precise), over all possible distributions. How much larger, on
the average, can the pseudo prophet’s expected return be compared to that of the gambler?

There are two natural scenarios:

Scenario 1. Nature picks a distribution P at random according to some mechanism, and Xy,..., X,

are sampled sequentially from P.

Scenario 2. At each stage 1 < i < n, nature picks a distribution P; at random, independent of

previous distributions, and X; is sampled from P;.

In Scenario 1, the gambler is able to gather information about P while playing. Thus, for large
n, the pseudo prophet’s advantage can be expected to be smaller than in Scenario 2, where no
information gathering is possible. Samuels (1981) gives average-optimal stop rules in Scenario 1
when P is uniform with a two-sided Pareto prior on the endpoints, but for the general case no sharp
upper bounds for the pseudo prophet’s advantage seem to be known.

Scenario 2 is analytically more tractable, since here the gambler essentially observes an i.i.d.
sequence of random variables from the average distribution P. The purpose of this note is to show
that the extremal case is when P is Dirac with probability one, thereby reducing the problem to
an ordinary prophet/gambler comparison for i.i.d. random variables. A theorem by Hill and Kertz

(1982) can then be invoked to obtain sharp ratio and difference inequalities.

2 The main result

Let P be the space of probability distributions on IR = [0, 00), endowed with the weak* topology.
Let Py be the subset of P of distributions having a finite first moment. Note that Py is Borel



measurable since its complement in P can be written as

N uU {P:/[mm]xdp(a:) >k}.

k=1 m=1

A prior is a Borel probability measure on the space P. Call a prior @ integrable if Q(Py) = 1. For

an integrable prior @, let Py,..., P, be independent random distributions sampled from @, and
let Xi,..., X, be random variables satisfying
PTOb(Xl S Al,...,Xn S An|P1 = Pl,...,Pn = Pn) = Pl(Al) Pn(An) (].)

for all sets Ay, ..., A, and distributions Py, ..., P,,. Thus, given Py, ..., P, the variables Xy,..., X,
are independent with respective distributions P;,...,P,. By considering product spaces in the
usual way, it can be assumed that Xi,..., X, and Py,...,P, are all defined on the same underly-

ing probability space. Let T,¢ denote the set of stop rules 7 satisfying 7 < n and
{r=k}eo({X1,...,Xk}), k=1,...,n,
and let 7,7 be the set of stop rules 7 satisfying 7 < n and
{r=k}eo({X1,..., Xk, P1,...,Py}), k=1,...,n.

Since the pseudo prophet knows Py, ..., P, ahead of time, he can employ stop rules in 7,7. So his

optimal expected return is

VPQ) = su7PP EX..
TET;

The gambler, however, is restricted to using stop rules in 7,¢. So his value is

VE(Q) = sup EX,.
TETE

Let Dy(Q) = V;7(Q) = V7' (Q), and Ra(Q) = V.7 (Q)/V,7 (Q).
Theorem 2.1 Let QQ be an integrable prior. Then
(i) Bu(@) < an; and
(i1) if Q assigns measure one to distributions supported on [a,b], then D, (Q) < b, (b — a).

Here a,, and b, are the same implicitly defined constants given in Theorems A and B of Hill

and Kertz (1982). Both inequalities are sharp, and (ii) is attained.

The constants a, and by, satisfy 1.1 < a, < 1.6 and 0 < b, < 1/4, and can be easily approxi-
mated (see Hill and Kertz (1982) for the details). For example, az ~ 1.171, a3 ~ 1.221, a4 ~ 1.248,
ajp ~ 1301, 10,000 ~ 1341, and b2 = ]./].6, b3 ~ 077, b4 ~ 085, blO ~ 100, blg’ogo ~ .111.



The proof of the theorem uses the following lemma, whose proof is routine. Let P denote the

average distribution of ). That is,
P() = [ POIQ(P)
P
Lemma 2.2 For every Borel-measurable function f : R™ — IR,

f@are) = [ [ f@areiqe).

Rt

Proof of Theorem 2.1. Let §, denote Dirac measure at z. Define the Borel mapping n : © — J,
from IR™ to P, and let Q* be the prior on P defined by Q*(B) = P(n~!(B)), for each Borel set
B of P. Let Yi,...,Y, be a sequence of i.i.d. random variables with common distribution P, let
Syn be the set of all stop rules for Y1,...,Y,, and define V(Y1,...,Y,) = sup,cs, EY;. From (1)
it follows immediately that X1, ..., X, are unconditionally i.i.d. with common distribution P, and

since the gambler observes only the values Xy, ..., X,, it follows that

VEQ)=V(Yi,...,Yn).
Since [ P(A)dQ*(P) = [6,(A)dP(y) = P(A), it follows likewise that
VEQ) =V(T,...,Yn) = VE(Q).

It will now be shown that

Define
VP(P,...,P,) = sup E[X;|P, =P,,...,P, =P,].

n

Note that for fixed P, ..., Py,

VE(P,...,P) <E(X,V---VX,|P, =P,...,P, = P,)

n

= / x1 V-V, dP(z1)...dP,(z,).
R+ R+



The second equality follows by a repeated application of Lemma 2.2. The last equality follows since
under @*, the pseudo-prophet has complete foresight, and the unconditional distribution of each
X; is P. It follows that

Dn(Q) SVP(Q)-VIQ)=EM1V---VY,) = V(Y1,...,Yy),

and
VEQ*) EMiV---VY,)

Rn(Q) < VnG(Q*) = V(YI’_..,Yn)

Applying Theorems A and B of Hill and Kertz (1982) completes the proof. O

Remark 2.3 Although the worst-case prior @Q* in the proof of the theorem is supported on the
set of Dirac measures, the bounds (i) and (ii) remain sharp if the support of @ is required to be
all of Py. To see this for (i), fix £ > 0, let @ be a prior with R,(Q) > a, —£/2, and let Q be any
prior with full support on Py. (Such priors were described, for instance, by Dubins and Freedman
(1967), Ferguson (1973), Mauldin, Sudderth and Williams (1992), and Hill and Monticino (1998)).
For 0 <t < 1, define
Qv =tQ + (1-1)Q.

Then @Q; has full support on Py for each ¢ > 0. It is straightforward to prove that V,%(Q;) and
V.F(Q:) are continuous as functions of ¢. Hence, for ¢ > 0 sufficiently small, R,,(Q¢) > R,(Q)—e/2 >
ap — €.

Similarly, the inequalities (i) and (ii) remain sharp if () gives measure one to distributions with

full support in IR™, or to absolutely continuous distributions.

Remark 2.4 If n = 2 and P is the uniform distribution on [0, 1], a simple expression for D5(Q)
in terms of the variance of the mean can be derived. For a distribution P, let up = f xdP denote

the mean of P. Note that for 0 <c¢ <1
1
/ :I:Vcdp(a:):/:I:Vcda::(1+c2)/2.
[0,1] 0

Hence V¥(Q) = |,

01TV (1/2) dP(x) = 5/8. Similarly,

Py P
Vy (Q) _/79/79‘/2 (P1, Py) dQ(P1)dQ(Pz)

= /79/79 (/[071](1“ V iip,) dPl(a:)> dQ(P1)dQ(Pz)
_ /7, ( /[071](93 V ip,) dP(a:)> dQ(P»)

1+ 2 1+ Eu
:/ %dQ(P):T“P.
P



Thus

Dy(@) = Lerle) 2

Using (2), D2(Q) may be computed explicitly for several well-known priors whose average distribu-
tion is uniform on [0, 1]. For instance, if @) is the random-rescaling prior introduced by Dubins and
Freedman (1967) with base measure equal to the uniform distribution on the vertical line segment
z=1/2,0<y <1, then Var(up) = 1/40 (cf. Mauldin and Williams, 1990), so D»(Q) = 1/80. Al-
ternatively, if @ is a Dirichlet process prior with base measure «([0, z]) = cx on [0, 1] (see Ferguson,

1973), then it can be shown that Var(up) = [12(c + 1)]71, so D3(Q) = [24(c + 1)] 7%

Remark 2.5 The authors do not know sharp pseudo-prophet inequalities for priors @) restricted

to distributions with a given (fixed) mean u, or priors satisfying other kinds of partial information.
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