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1. INTRODUCTION

It is well known that the range of a finite-dimensional, atomless finite vector
measure is convex and compact; this is Lyapounov’s celebrated convexity theorem
[13] of 1940. Somewhat lesser known is a generalization of Lyapounov’s theorem

due to Dvoretzky, Wald and Wolfowitz [3], which says that the partition range

{(1 (A1), p2(A2), ..oy un(4n)) : (A1, ..., Ay,) is a partition}

of a finite-dimensional, atomless finite vector measure i is also both convex and
compact.

If the vector measure has atoms, then convexity of both the range and the
partition range may fail in general, as is best seen by considering a vector measure
supported on a finite set. The question of necessary and sufficient conditions for
the range (or partition range) to be convex was addressed by Gouweleeuw [6]. A
different approach may be based on the following idea: if the sizes of the atoms are
small, then the range (and partition range) are very close to being convex. Elton
and Hill [4] have proved a bound on the degree of non-convexity of the range of a
vector measure, as a function of the maximum atom size. The aim of the present
paper is to derive an analogous sharp bound on the degree of non-convexity of the

partition range. The main result is that

the Hausdorff-distance (with respect to the sup-norm) from the partition
range of an n-dimensional vector measure to its convex hull is at most

a(n — 1)/n, where « is the size of the largest atom.

This bound is attained, and improves on an earlier inequality of Hill and Tong [11].

A formal statement of the main result is given in Section 2 (cf. Theorem 2.5), and
a proof is presented in Sections 3 and 4. The proof consists of a number of steps: first
the problem is reduced to the case of a purely atomic vector measure with at most
a finite number of atoms, using an approximation scheme analogous to that used
in [4]; then it is shown, using the Shapley-Folkman lemma from convex geometry,
that only vector measures with no more than n atoms need to be considered; and

finally the theorem is proved for this special case (of a purely atomic vector measure
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with at most n atoms), using a variety of tools from graph theory, combinatorics
and geometry, such as directed graphs and trees, convex polytopes, and supporting
hyperplanes.

Section 3 contains the two above-mentioned reduction steps, discusses some fun-
damental geometric properties of the partition range, and introduces a certain type
of directed graphs (to be called graphs of options) which play an important role in
the proof. The main body of the proof is contained in Section 4.

The reason for choosing the sup-norm will become apparent in Section 5, where
it will be pointed out how Theorem 2.5 can be used to generalize existing optimal-
partitioning inequalitites for atomless measures to measures with atoms. As an
example, generalizations will be given of two well-known inequalities of Elton, Hill
and Kertz (1986) and Hill (1987). These results turn out to have some interesting

implications for the problem of fair division.

2. THE MAIN THEOREM

Throughout this paper, u,p1,...,u, will always denote finite, non-negative
countably additive measures on a fixed measurable space (2, F). The vector mea-
sure i = (p1, ..., tn) is defined by @(A) := (u1(4),...,un(4)) e R", A€ F.

For a set B € F,ji|p denotes the restriction of i to B: fi|p (A) = E(AN B).
A set E € F is called a (scalar) atom of u if u(E) > 0 and for each F C E, F €
F:u(F) € {0,u(E)}. Similarly, E is a vector atom of ji if i(E) # 0 and for each
F C E,F e F:jiF) = jiE) or ji(F) = 0. A (vector) measure is atomless if it
does not have any atoms. A measure (resp. vector measure) is purely atomic if is

assigns mass 0 (resp. 6) to the complement of the union of its atoms.

Remark 2.1. From the definition of vector atom it can be seen that if F is a vector
atom of @ = (u1,...,un), then

(i) E is a scalar atom of at least one p;;

(ii) for each i € {1,...,n}, either E is an atom of u;, or u;(E) = 0.

Conversely, it follows from Lemma 2.4 (iii) in [6] that if E is a scalar atom of p; for

some 4, then E contains a vector atom F' of ji with f(F) = ji(E).
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As a consequence, a vector measure is purely atomic if and only if all its com-

ponent measures are.

A measurable n-partition of ) is an ordered collection (A, ..., A,) of subsets of
Qsuch that A; € F (i=1,...,n),4;NA; =0 for all i # j, and J_, A; = Q. Let
IT™ denote the collection of all measurable n-partitions of 2. Because all partitions
considered in this paper are measurable n-partitions, we will simply use the word
‘partition’.

Throughout this paper, the following notation will be used: for a partition A :=
(A, and a vector measure fi, ;;(75 denotes the vector (ui(A1),...,un(4,) in
R".

Definition 2.2. PR(ji) := {u(A): A € II"} is the partition range of fi.

Proposition 2.3. [Dvoretzky, Wald and Wolfowitz (1951)]. If i is atomless, then

PR(fZ) is conver and compact.

In fact the theorem of Dvoretzky, Wald and Wolfowitz is more general: it says

n,k

that the matriz range {(1i(4;));2 j=1 : (A;)i; € II"} is convex and compact for

each k € IN. This paper, however, will focus on the partition range.

The main goal of this paper is to generalize the above convexity result to mea-
sures with atoms. In order to do so, the following notation is needed. For a vector
z = (21,...,7,) € R", let ||z]|, denote the £,-norm (-7, |z;|?)}/P for 1 < p < o,
and maxi<j<y, | ;| for p = co. For vectors « and y in IR", let dp(z,y) = ||z — y||,
denote the distance between x and y. For a set S in IR" and a point z in IR", let
dy(z,S) = infycs dp(z, y) denote the distance from z to S, and D, (S) the Hausdorff
distance from S to its convex hull co(S):

D,(S) := esu;()s) dy(z,S)

Definition 2.4. For a > 0, Py(«a) is the collection of all n-dimensional finite

vector measures fi for which ||Z(E)||co < « for each atom E of [i.
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The following theorem is the main result of this paper. It generalizes the con-

vexity part of Proposition 2.3.

Theorem 2.5. If i € P,(a), then

Doo(PR()) < 21

«,
n

and this bound is attained.

Example 2.6. (sharpness of Theorem 2.5) Let ju; = adyoy,i = 1,...,n, where 0
denotes Dirac measure. Then PR(fi) = {ae; : i =1,...,n}, where e; denotes the
i—th unit vector in R"™ with 1 in the i—th position and zeros elsewhere. It follows
that co(PR(fi)) = {z € RY : YI' | x; = a}. In particular, y = (a/n,...,a/n) €
co(PR()), and for any x € PR(ji),||z — y||lo = a(n —1)/n.

The following immediate consequence of Theorem 2.5 improves on an earlier

result of Hill and Tong ([11], Theorem 3.2).

Corollary 2.7. If ji € Py(«), then

n—1

N

Example 2.8. The bound in Corollary 2.7 is of the correct order of magnitude in

Dy (PR(ji)) <

Q.

n: let p; = adgy,i = 1,...,n; then PR(ji) = {0,a}", hence co(PR(fi)) = [0, a].
In particular, y = (a/2,...,a/2) € co(PR(ji)), and for any © € PR({), ||t —yll2 =
ay/n/2.

3. PRELIMINARIES

3.1. Digraphs and out-trees. An important role in the proof of Theorem 2.5 is
played by directed graphs or digraphs. A digraph G consists of a finite set V = V(Q)
of vertices and a collection £ = £(G) of ordered pairs of distinct vertices called arcs.
An arc e = (u,v) is said to be directed from u to v. The vertex u is called the initial
endpoint of e, denoted ini(e), and v is called the terminal endpoint of e, denoted
ter(e). If v is a vertex of G, we will often write v € G instead of v € V(G) for

brevity. Similarly, if e is an arc of G we write e € G.
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A subgraph of G is a digraph G’ such that V(G') C V(G) and £(G') C £(G). If
G' is a subgraph of G, then we say that G contains G', and denote G' C G.

The indegree of a vertex v is the number of arcs directed to it. Similarly, the
outdegree of v is the number of arcs directed from it.

A path P is an alternating sequence (vo, €1,v1, €2, . . ., €m, Uy, ) of distinct vertices
and arcs so that e; = (v;—1,v;) for all ¢ = 1,...,m. The path P is said to be
directed from vy to v,,. The vertex vg is called the initial endpoint of P, denoted
ini(P), and v, is called the terminal endpoint of P, denoted ter(P). If a digraph
G contains a path from u to v, then v is said to be reachable (in G) from u. Every
vertex is reachable from itself via the path consisting of just that vertex.

A digraph T is called an out-tree if exactly one vertex vp has indegree 0 and
all other vertices have indegree 1, and each vertex of T is reachable from vg. The
vertex vg is called the root of T'. (The converse structure, with all arcs pointing in
the opposite direction, is called an in-tree). An out-tree T is called mazimal in G if
T is a subgraph of G and T contains all vertices of G that are reachable in G from
the root of T'. (See Figure 1 for an example.)

The following two observations will be quite useful. Their verification is left to

the interested reader.

(OT1) In each out-tree T there is a unique path from the root to every other vertex.

(OT2) Every out-tree T' C G can be extended to a maximal out-tree in G.

Lemma 3.1. Let T be an out-tree, let vy be its root, and let G be a digraph con-
taining vg. Then there exists a mazimal out-tree T' in G with Toot vy, such that

each path P with initial vertex vo which is both in T and in G, is also in T".

Proof. Let Ty be the smallest digraph that contains all such paths; obviously 7y is
a subgraph of GG. Then for every vertex v # vy of Ty there is a path from vy to v in
T, by the minimality of Tp. Moreover, vy has indegree 0 (again by the minimality
of Tp), and all other vertices of Ty have indegree at most 1, since Ty is a subgraph

of T, and T is an out-tree. On the other hand, the indegree of these vertices is at
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FIcURE 1. A sample digraph G, and a maximal out-tree T in G

with root v.

least one since they are reachable from vy. Hence T} is an out-tree with root vy,

which by (OT2) can be extended to a maximal out-tree in G. O

For an extensive discussion of directed graphs and their applications the reader

is referred to Harary et al. [8].

3.2. Reduction to the purely-atomic case. The purpose of this subsection is
to reduce the problem to the case of a purely atomic vector measure with at most
a finite number of atoms. This will be done using an approximation machinery
analogous to that used by Elton and Hill [4]. The proofs of the following lemmas

are omitted since they are comletely analogous to the proofs that appear in [4], §3.

Lemma 3.2. For each i, each p € [1,0], and each e > 0, there exists a measurable
partition {B;}N_, of Q such that for each A € TI" there exists a partition (1j)j=1
of {1,...,N} satisfying

WA — (ul(U Bi),...oma( | Bi)>

i€l i€l

<e.

p

Lemma 3.3. For each i € P,(a) and each B € F, there exists a measurable

partition {Bj}f:1 of B such that u;(B;j) < a for all j <k and i <n.

Proposition 3.4. For each [i € Pp(a), each p € [1,00], and each € > 0, there is a

purely atomic vector measure fly € P, () with finitely many atoms, such that
Dy(PR(ji)) < Dp(PR(fio)) +e.

Proof. Follows immediately by Lemma 3.2 and a repeated application of Lemma

3.3. (|



3.3. Geometric properties of the partition range. In view of Proposition 3.4,
we will assume for the remainder of this section that /i is purely atomic with at most
a finite number of atoms. Thus V' = PR(j) is a finite set in IR" in view of Remark
2.1, so its convex hull C' = co(PR(f)) is a convex polytope. Hence C can be written
as a finite intersection ﬂi\il H; of halfspaces of the form H; = {z : (p(,z) < ¢},
where p( € R" with p(d # 0, and (p?),z) := 2?21 pg-i)a:j. Each hyperplane
L; = {z : (p?,z) = ¢;} that has a non-empty intersection with C is a supporting
hyperplane of C, and the vector p'¥ is an outward normal of L;. The intersections
of the supporting hyperplanes with C are called the faces of C. By an outward
normal of a face F' will be meant an outward normal of a supporting hyperplane
containing F'. The union of all the faces of C is called the boundary of C, denoted
Bd(C). It is clear that each face of C' is both convex and compact. The dimension
of a face is the affine dimension of the smallest affine subspace containing that face.
A face is called mazimal if it is not contained in any other face.

We will assume that p;(2) > 0 for all 4 < n (this is no real restriction: e.g. if
1n(2) = 0, then consider the (n — 1)-dimensional vector measure (u1, ..., fn—1)
instead of ). Then V contains the n points u;(Q)e;, i =1,...,n (where e; is the
i-th standard unit vector in IR"), so the affine dimension of V' is at least n — 1. It

is easily seen that each maximal face of C then has dimension n — 1, and hence has

a unique outward normal.

Lemma 3.5. Let F be a mazimal face of C, and let p = (p1,-..,pn) be the unique

outward normal of F'. Then either p; > 0 for all i <n, or p; <0 for all i <n.

Proof. By contradiction. Suppose there exist ¢ and j, i # j, such that p; > 0
and p; < 0. Then p is not the j-th standard unit vector, so F' does not lie in the
hyperplane {z : z; = 0}, and hence there is a point x € F NV with z; > 0. Let
(A;), be a partition such that z; = w(A4;),! = 1,...,n. Define the partition
A" = (AP, by A= A; UAj, A5 =0, and A = A, for | ¢ {i,j}. Let o' = p(A”).
Then 2’ € V, and

(pa'y = > pa+pilwi+ wi(4) > pa > (p,x)
1¢{i.} 1]



where the first inequality follows since p; > 0, and the second since p; < 0 and

x; > 0. But this contradicts the fact that p is an outward normal of F. [l

Lemma 3.6 (The Key Equation). Let F' be a face of C with outward normal p.
Then for any two partitions (A;), and (B;)!, in g, indices i and j (i # j) and
subset E C A; N B,

(1) piti(E) = pjn;(E)
Proof. There exists a constant ¢ € IR such that
(2) (p,y)=c forally e F, and (p,y)<c forallyeC.
Consider the partition (4;);L, given by A = A;\E, A} = A; UE and 4] = A; for
1 ¢ {i,j}. Then by (2),
pria(Ar) + -+ prpin(An) = ¢

Subtracting these two equations yields p;p;(E) > p;u;(E). Similarly, by consider-

ing (B;);~, and a suitable partition (B]);,, we can derive p;u;(E) < p;u;(E). O

The last result in this subsection, which concerns a further reduction to vector
measures which have no more than n atoms, is based on the following Carathéodory-
type result (see [1]).

Let the vector sum V) ®V; of two sets V) and Vs, be defined by Vi & V2 = {v; 4v- :

V1 € ‘/1,1)2 S Vz}

Lemma 3.7. (Shapley and Folkman) Let Vi,..., V) be nonempty subsets of R".
Then for eachy € co(V1)®- - -®co(Vy) there exists a representation y = x1+- - -+xy,

with z; € co(V;) for all i, but x; ¢ V; for at most n indices i.
Proposition 3.8. Let the atoms of il be E\, ..., Ey. Then for each p € [1, 0],

D, (PR(ji)) < max{Dp(PR(ji l(,e,)) | T C {1,...,k}, 1| < n}.
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Proof. Let V; :== PR(ji|g,),i =1,...,k. Then PR(if) =V & --- ® V} and hence
co(PR(fi)) = co(V1) @ --- @ co(Vi) (see, e.g. [7], p. 316). Let y € co(PR(ii)). By
Lemma 3.7 there is a representation y = 1 + -+ - + @, with z; € co(V;) for all 4,
but z; ¢ V; for at most n indices i. Let I denote the set of indices i for which
x; ¢ Vi. Then dy(y, Vi @ - @ Vi) < dp(X;cr Tin Dier co(Vi)) < Dp(®ierVi)- Since
DierVi = PR(fi l(U;c, B;)), this completes the proof. O

3.4. Graphs of options. Throughout this subsection, let F' denote an arbitrary,
but fixed face of co(PR(f)).

Definition 3.9. IIp = II} s the collection of all measurable partitions A =

(Ay)], such that w(A) e F.

Definition 3.10. For a partition A = (A;)]-, € Ilp, the graph of options G(A; F)
of A with respect to F is the digraph with vertex set {1,2, ... ,n} and an arc
from i to j (i # j) for each atom E C A; for which A’ = (A))], € lIr, where
Al = A\E, A, = AjUE and Ap = Ay, L ¢ {i, j}.

To distinguish between two or more arcs from i to j, each arc is labeled with the
corresponding atom. Thus to each arc e corresponds an ordered triplet (i,j, E), and

vice-versa. If e = (i, j, E), then we shall denote at(e) = E.

The intuitive interpretation of an arc (i,j, E) is that if E is moved from A; to

A;, then the resulting partition is still in IIf.

Definition 3.11. £(F) is the set of arcs that occur in G(A;F) for at least one

partition A € Ilp.

Lemma 3.12. Let e € E(F) and A = (A))}, € lIp. Then e € G(A; F) if and

only if at(e) C Ainie)-

Proof. Suppose first that at(e) C Ajni(e). Let e = (4,5, F), so E C A;. Let L be a
supporting hyperplane of co(PR(ji)) that contains F', and let p = (p1,...,pn) be
an outward normal of L. Then by Definition 3.11, e € G(B; F') for some partition
B € Iy, so by Definition 3.10 and Lemma 3.6 it follows that p;u;(E) = p;ju;(E).

Hence with A’ = (A]);_, defined as in Definition 3.10 it follows that the point
11



x' := p(A’) lies in L. Since also ' € PR(f), it follows that ' € F. Hence
e € G(A; F). The converse is trivial. O

Definition 3.13. Two not necessarily distinct arcs e and €' are related if ini(e) =

ini(e’) and at(e) = at(e’).

Lemma 3.14. Let e and €' be two related arcs in E(F), and let G be a graph of

options with respect to F'. Then e € G if and only if €' € G.
Proof. Immediate from Definition 3.13 and Lemma 3.12. O

Definition 3.15. For a partition A in Iy and a path Q in G(A; F), define a
new partition Mq(A) as follows. Let eq,..., e, denote the arcs of Q, ordered so
that ini(e,) = ter(ey41),r = 1,...,k — 1 (so ey is the initial, and e; the terminal
arc of Q). For brevity, write i = ter(e1), and for r = 1,...,k, i, = ini(e,)
and E, = at(e,). Now define Mg(A) := A', where A" = (A])], is given by
Al = A, UE A = (A, UE, )\E, forr =1,...,k— 1,4, = A; \Ey, and
Ay = Ay for all 1 ¢ {io,i1,..., ik}

Intuitively, Mg (A) is the partition arising from A by ’executing’ all arcs of @,

i.e. by moving at(e) from Ajyi(c) to Ager(e) for each e € Q.

Example 3.16. Suppose that Q) consists of the two arcs (1,2, E) and (2,4,E).
Then Mg (A) is the partition resulting from moving E from Ay to A, and moving
E from A, to Ay; more precisely, Mgo(A) = (4], with A} = A\E, A, =
(A UE\E, Ay = AyUE, and A} = A; for all | ¢ {1,2,4}.

Lemma 3.17. Let A € Iy, let QQ be a path in G(A; F), and e € G(A; F).
(i) Mq(A) €lp.
(ii) If e € Q, then e ¢ G(Mg(A); F).
(iir) If A" = Mg(A), and E is an atom such that E C A; N A} (i # j), then
(4,7, F) € Q.
(iv) e € G(Mg(A); F) iff e is not related to any arc of Q.

12



Proof. Let A’ = Mg(A), and let 2’ = m Clearly ' € PR(f). An argument
similar to that in the proof of Lemma 3.12 shows that 2’ is also in the supporting
hyperplane that contains F'. Hence x' € F. This proves (i). Note that (iv) implies
(ii), while (iii) follows at once from the definition of Mg(A) above. It therefore
remains to prove (iv).

Let i = ini(e), and E = at(e). Since e € G(A;F), Lemma 3.12 implies that
E C A;. Suppose first that e is related to e, for some r € {1,...,k}. Then i = i,
and E = E,, hence A} = A = (A;, UE, ()\E, if r <k —1, orelse (if r = k)
A} = A = A \Ey. In both cases it follows that E ¢ A}, so by Lemma 3.12
e ¢ G(Mo(A); F).

Conversely, if e ¢ G(Mg(A); F'), then E ¢ A by Lemma 3.12, so E C Aj for
some j # i. Hence (iii) implies (7,7, F) € Q. But (i, j, E) is related to e. O

4. PROOF OF THE MAIN THEOREM

Note that if n = 1, then PR(fZ) = PR(u1) = {p1(2)} and the statement of the
theorem is trivially true. Therefore it can and will be assumed from here on that
n > 2. In addition it will be assumed that a = 1; the general case a > 0 then
follows easily by rescaling, and the case a = 0 follows by continuity.

First we prove a ’face-wise’ version of Theorem 2.5.

Proposition 4.1. Let ji € P,(1) be purely atomic with finitely many atoms, and
let V.=PR(ji). Then for every face F of co(V),

1
Doo(VmF)g"n .

In order to prove Proposition 4.1, the following lemmas are needed. In Lemmas

4.2-4.4, F denotes a face of co(V) and y denotes a point in F'.

Lemma 4.2. Let A be a partition in llg, and let x = p(A). If

n—1
(3) $1>y1+T;

13



then every mazimal out-tree with root 1 in G(A; F') contains an executable arc, i.e.

an arc e such that

n—1
-

(4) Tter(e) + Hter(e) (at(e)) < Yter(e) +

Proof. Let F' be a maximal face that contains F, and let p = (p1,...,pn) be an
outward normal of F. Then p is also an outward normal of F, and by Lemma
3.5 either p; > 0 for all ¢, or p; < 0 for all i. Assume without loss of generality
that p; > 0. (The proof of the other case is similar, the only difference being the
directions of the inequalities which involve a factor p;).

Let T be a maximal out-tree with root 1 in G := G(A;F). First we claim
that T has at least one vertex other than 1. To see this, note that by (3) and
since y € co(F NV), there is a partition A’ € IIp for which u;(A}]) < 1 <
x1 = p1(A41). Hence there is an atom E such that E C A; but E ¢ A, so
E C Aj for some i # 1, say E C A}. Then the Key Equation (Lemma 3.6)
implies that (A;\E, A2 U E, As,...,A,,) € IIp, which by Definition 3.10 means
that (1,2, E) € G, i.e. 2 is reachable from 1 in G. Since T is maximal, this means
that 2 € T'.

Next, let I denote the vertex set of T'. Then for any j € I'\{1} there is a unique
arc e; € T with j = ter(e;). Let E; = at(e;), and denote v; = p;(E;). The proof
will be complete once it has been shown that for some j € T\ {1},

n—1
(5) T+ Syt ——,

which will yield (4) for e = e;.
The key to the proof of (5) is the following inequality.
(6) Z pjv; < Z p; foreachiel.
JeI\{1} JEN{i}
For i = 1, (6) follows immediately since v; < 1 for all j. Fori # 1, let P = (1 =
105 €iy,01y+ s 0m—1,€i,,im = 1) be the unique path in T from 1 to i. Then by the

Key Equation,

(7) Pi. Vi, = Pi. i, (Bi,) = pip_y iy (Bi) <pi_y, r=1,...,m.

14



Hence

m
Yoopvi= Y puit D D =Y pvi kY DYy
r=1

jen{i} J€{in, - im} i¢{io,-im} 3¢{io,.. im}

m
SZPir_l + Z pj= Z Djs
r=1

J&{i0,-orim } jeI\{i}
where the first and last equalities follow since i = 1 and ,, = ¢, respectively, and
the inequality follows by (7) and since v; < 1. This completes the proof of (6).

Applying (6) for each ¢ in turn now yields

IEEI DD IS HIDSFIEI I DI DY

jEn1y i€l jen{1} el jen{i} Jel ien{s}
-1 n—1
P S e W
jeI jeI

Next it will be shown that

9) D P = max y piz >y piy.

i¢l j¢l i¢l
To prove (9), let z € FNV. Then z = (u1(B1),...,un(By)) for some par-

tition (B;)7_;. Since T is maximal, G' does not contain any arcs from I to

I°={1,...,n}\I. By definition of G this implies that

(10) UsiclJA4.
J¢r J¢r

Now

Y opini(A5) > YD pini(A; N Bi) =YY pipi(4; N By)

i¢l JEI gl J¢I igl
=3 (AN B) = pipi | Bin [ [J A | | =D pini(Bi),
il jgl igl jél igl

where the inequality follows since (B;)?, is a partition, the first equality follows
by the Key Equation, the third equality follows since (A]-);?:1 is a partition, and
the last equality follows by (10). This settles the first part of (9). The second part
then follows since y € co(F NV) and any linear functional takes its maximum over

a convex compact set in one of the extreme points.
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Next, observe that since both 2 and y are in F, it follows that Y7, p;(z;—y;) =
0, so (9) implies >, p;j(z; — y;) <0, which added to (8) yields

(11) > opilwi—y)+ Y, pv < nglzpj-

jeIl jeN{1} jeI

Multiplying (3) by p; and subtracting the result from (11) gives

n—1
> w rjtvi—yi——— =0
Jjen{1}
so at least one term of the above sum must be non-positive. This yields (5), and

thereby completes the proof of Lemma 4.2. O

Lemma 4.3. Let A € llp, let z = u(A;, and let T be a mazximal out-tree with root
1in G(A; F). If z1 > y1 + (n —1)/n, then there ezists a path Q C T containing at

least one arc such that
, n—1 .
(12) |wl_yl|§max |xl_yl|7T ) ’LZI,...,TL,

where ' = u(Mqg(A) ).

Proof. By Lemma 4.2, T contains at least one executable arc, i.e. an arc e satisfying
(4). Let e € T be an executable arc with minimum distance in T to 1. Let
P denote the unique path in T from 1 to ter(e), and let the arcs of P be denoted
fi,--, fm, ordered so that f,41 precedes f,. in P forr =1,...,m—1. In particular,
fi =e,ini(f,,) = 1, and ini(f,) = ter(fr41) for r=1,...,m — 1.

Denote ig = ter(f1), i = ini(f,) (r =1,...,m), and E, = at(f,) (r=1,...,m)
(See Figure 2). Now define

-1
m* ;:min{TZ].Cl'iT_Nir(Er)Zyir_n }
n

Note that m* < m since, by assumption, z; > y1 + (n — 1)/n and n > 2. Define Q

to be the path consisting of the arcs fi, fa,..., fm=. Next define A’ = (A4})", by
16



Z-m,1 'L.Q iO

fm fm—1 / f2 fi=e

1 - Zm im—? 7:1

FIGURE 2. Vertices, arcs and atoms of the path P that is used to

generate the next partition in the sequence (A*)pen.
A’ = Mg(A). More specifically:
A;O = A;, U Ey;
A = (A, UE, 1 )\E,, r=1,...,m" = 1;
A=A N\Epe;
A=A, fori ¢ {io, ... ,0m=}

Let o/ = p(A'). Tt follows from (13) that

x4+ pi(Er), it = ip;
i+ pi(Erg) — pi(Er), i=1d,1<r<m*—1;
(14) T =
zi — pti(Em), P =
i, ’L¢{’Lo,,lm*}
For i ¢ {io,...,im~}, (12) is obvious since x; = z;. For ip we have z} > z;,

since p;, (E1) > 0, whereas by the executability of fi (cf. (4)),

n—1
T = Tiy + pio (B1) < yip + —

20

Hence (12) holds for i = ig. For r = 1,...,m* — 1, the definition of m* implies
n—1
i, — pi, (Er) <yi, — ;
n
while since f,41 is not executable,
n—1

Ti, + pi, (Bry1) > yi, +

Using (14) it follows that

1 n n—1 1
Vi, — — <Wi, + —— — i, (By) <z <y, — —— + pi, (Ery1) <yi, +—,
n n n n

17



which yields (12) for i = 4, since 1/n < (n — 1)/n.
For i+, finally, it follows immediately from (14) that =} . < =; .. On the other

hand, by definition of m*,

n—1
By = T = i () 2 91, = .

Together, these two facts yield (12) for i = iy..
We have now proved (12) for i = ig,i = i(1 < r < m* —1),i = iy+ and
i ¢ {io,...,im=}. Since this enumeration exhausts all possible values of i, the proof

is complete. O

Lemma 4.4. Let x be a point in VNFE with z1 > y; — (n—1)/n. Then there exist
7 € INU {00}, and sequences (a:k)zzl, (Ak)zzl, (Gk);:p (Tk)gzl, and (Qk);:
with the properties that for all | < T,

—
(A,

(15) 2'=p
(16) o' € F,
17) o' ="Moo <1 (fori<7),

(18) |2ttt — yi| < max{|zt — yi|,(n — 1)/n} for alli (forl<T),

(19) G'=G(ALF),

(20)  T'is a maximal out-tree with root 1 in G',

(21)  Each path with root 1 which is in T' N G'*L is also in T'*! (for 1 < 1),

(22) Q' is a path in T' containing at least one arc (for 1 < 1),

(23) At = My (A (forl<T).
Moreover,
. Kk n—1
(24) Ti=inf{keN:xf <y, +—.
n
P 1 _ 1 _ 1\n e : 1y _ .1 1
roof. Let &' = z, let A’ = (A4;)", be a partition with p(A") = z', let G' =

G(A'; F), and let T" be any maximal out-tree with root 1 in G*.
18



Next, let ¥ € IN, and suppose that we have constructed (z!)F_ | (Al)le, (GHF_,,
and (T")k_, satisfying (15), (16), (19) and (20) for [ = 1,...,k, and (17), (18) and
(21)-(23) for I =1,...,k — 1. Consider the following two cases:

Case 1, z% <y, + (n — 1)/n. Then we can set 7 := k and we are done.

Case 2,

-1

Then Lemma 4.3 implies the existence of a non-empty path @ C T such that (12)

holds if o' = (Mg (A)). Define QF := Q, AL = Mo(A¥), GF1 .= G(AF; ),
and ¢t =z’

Finally, let T**! be a maximal out-tree in G¥*! that satisfies (21) for | = k.
(Such a tree exists in view of Lemma 3.1).

We have thus constructed a point z**1, a partition A¥*+!, a digraph G**!, an
out-tree TF! and a path Q* such that (15), (16), (19) and (20) are satisfied for
I=k+1,and (17), (18) and (21)-(23) are satisfied for | = k (where (17) is a direct

consequence of (14)). By the principle of induction, the proof is complete. O

Lemma 4.5. Suppose there exist 7 € IN U {oo}, and sequences (:vk)zzl, (Ak)zzl,
(G*)p_y, (T*),_,, and (Q’”);;i such that (19)-(23) hold for all Il < 7. Then there
exists a sequence of paths (Pk);;i such that for all k < 1

(26) P cTh,

(27) Pk g G for alll > k.
Proof. For each k < 7, define
eF : the initial arc of Q*, i.e. e is the arc of QF with ini(e*) = ini(Q*);

P* : the unique path in T* from 1 to ter(e®).

Note that in particular, e € P* and e* € Q¥. The first important fact is that for

allk <7,

(28) ek ¢ Gk+1’

19



as follows easily by Lemma 3.17 (ii) since e* € Q* and A¥1 = My (AF) by (23).
Let pr denote the graph-theoretic distance between 1 and ini(e*) in T*. The proof
of Lemma 4.5 will use induction on py.

First suppose that p, = 0. It will be shown that
(29) kg Gl l> k.

This will be done by induction on [. Note first that e ¢ G**! by (28). Suppose
now that ef ¢ G! for some | > k. Since p, = 0, it follows that ini(e*) = 1, so
Lemma 3.12 implies at(e*) ¢ A!. Hence at(e*) C Al for some i # 1. Since T' has
root 1, there is no arc in T from i to 1, so in particular, there is no such arc in Q'.
By Lemma 3.17 (iii) it follows that at(e*) ¢ A" = A;:;i%ek)’ which by lemma 3.12
and (19) implies e* ¢ G'*!. This completes the proof of (29).

Since eF € Pk, (29) implies that P* ¢ G! for [ > k, which proves (27) in case
pr = 0.

Now let m € IN, and suppose (27) holds for all £ < 7 with p, < m — 1. It will
now be shown that (27) holds for all k¥ < 7 with p;, < m, which will complete the

proof of Lemma 4.5 by induction.

Fix any k < 7 so that pr, < m, and define

E:=inf{l>k+1: el is related to some arc e € Pk\ek},

where inf(}) = co. Since e € P*, the proof will be complete once it has been
shown that

(30) P* ¢ G' for all | > K/,

(31) k¢ G forl=k+1,... k.

Here and in the sequel, {k + 1,...,k'} is to be read as {k+ 1,k + 2,...} in case
k' = oc.

First we establish the following fact:
(32) PR\et cT! 1=k, ... K.

To see (32), note first that P¥\e¥ C P* C T* by definition of P¥. Now suppose

that P*\e* C T for some [ € {k,...,k' — 1}, and let e be an arc of P*\e".
20



Suppose, by way of contradiction, that e is related to some arc of Q'; then
ini(e) € Q'. Since P*\e¥ C T! by the induction hypothesis, P*\e* contains the
unique path R in 7" from 1 to ini(e). Since ! is the initial arc of @', and since
Q' C T!, we have either ! € R, or ini(e!) = ini(e). In both cases €' is related to an
arc of P*\e*. But this is a contradiction since | < k'.

Thus e is not related to any arc of @', so Lemma 3.17 (iv) implies e € G'*+1.
Since e was arbitrary, it follows that P*\e* C G!*!. Hence P*\e* C T'*! in view
of (21). This proves (32) by induction.

In particular, (32) implies
(33) P¥\e* c TV,

By definition of &', ¥ is related to some arc e € P*\e¥, hence ini(e') = ini(e) €
P*\e*. Since T* is a tree that contains both P¥\e* and P* | the paths P*\e* and

P* must overlap up to the common vertex ini(e’“’), ie.
(34) P¥\e" c P*\e".

Moreover, ini(e*') = ini(e) # ini(e*) and therefore, since ini(e*) and ini(e*') lie on
the same path PF\e*, it follows from (34) that pr < pr —1 < m — 1, and the

induction hypothesis implies
(35) P¥ ¢ G' for all | > k.

Now for any [ > k' there are two possibilities: either P¥ \ek’ ¢ G', which by (34)
implies P* ¢ G'; or e¥ ¢ G!, which by Lemma 3.14 implies e ¢ G' (recall that
e and e* are related), so certainly P* ¢ G! because e € P*. This completes the
proof of (30).

The proof of (31) is similar to that of (29), but this time the argument is slightly
more subtle. We will again use induction on [. Note first that e* ¢ G¥*! by (28).
Suppose e* ¢ G for some [ € {k +1,...,k' —1}. For brevity, write E := at(e")
and j := ini(e*). By the induction hypothesis and Lemma 3.12 we have E ¢ Aé-,
so B C Al for some i # j, since (AL)™ | is a partition. By (32), T' contains the arc

e € P*\e* with ter(e) = j. Since both e and e are in G*, and ini(e) # ter(e) = j =
21



ini(e*), it follows by a double application of Lemma 3.12 that at(e) # at(e*) = E.
Therefore, e # (i,j, E). Since T' is an out-tree, j has indegree 1 in T', i.e. e is
the only arc in T! directed to j. This implies that (i,7,F) ¢ T'. In particular,
(i,5,E) ¢ Q', so by Lemma 3.17 (iii), E ¢ AS-H. A final application of Lemma 3.12
yields e* ¢ G'*1, which completes the proof of (31). O

Proof of Proposition 4.1. Fix a face F of co(V') and a point y € F. It will be shown

that there exists a point € V' N F satisfying

n—1 .
|z —yi| < , i=1,...,n.
n
This will be done inductively. Let m € {1,...,n}, and suppose there exists a point
x € V N F such that
n—1

(36) |z; —yi| <

foralli <m —1.

(Note that if m = 1 then (36) is vacuous). We will now construct a finite sequence

of points (z¥);_, in V' N F such that

-1
(37) |2] — vl §max{|mi—yi|,nT} Vi<n, and

n—1
(39) 77, = yml < .

Then the point 2’ = 27 will satisfy

n—1

(39) |z} — ;| < for all i < m,

and the proof will be complete by induction.
Suppose that |z, — ym| > (n — 1)/n (otherwise 2’ = x satisfies (39)). By
reordering the coordinates of x if necessary, we may assume that m = 1. Then

either
-1
(40) z1 >y + nT’

or 1 < y; — (n —1)/n. Only the first case will be considered here; it is left as
an exercise for the interested reader to verify that the second case can be treated

completely analogously.
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Suppose that (40) holds. By Lemma 4.4 there exist 7 € INU {00}, and sequences
(F) 1y (Ak);:p (GF)r_y, (TF);_,, and (Qk);: such that (15)-(23) hold for all
[ < 7. We shall now show that 7 < oo.

Notice that Lemma 4.5 implies the existence of a sequence (Pk);: satisfying
(26) and (27) for all k < 7. Since T* C G*, (26) implies that P¥ C G*, hence
using (27) we see that G # G' for all k < 7 and [ > k. Hence all G*’s (k < 7) are
different. This means that all partitions A*(k < 7) are different. Since there are
only finitely many different partitions of n atoms, this means that 7 < oo.

It now follows from (24) that 27 < y; + (n — 1)/n. On the other hand, (24) also
implies that ]! > y; 4+ (n — 1)/n, so using (17) and the fact that n > 2 if follows
that 2] > 27" —1 >y, — 1/n > y; — (n — 1)/n. This proves (38) (recall that

m = 1), while (37) follows immediately from (18) using induction. O

Proof of Theorem 2.5. First assume that « = 1. Fix @ € P,(1) and ¢ > 0. By
Proposition 3.4, there is a purely atomic measure jip € P, (1) with finitely many

atoms such that
(41) Do (PR(i1)) < Doo(PR(fi0)) + ¢,

and using Proposition 3.8 we can assume w.l.o.g. that the number of atoms of iy
is at most n. For brevity, write V := PR(jip). Fix a point y € co(V'), and consider

the following two cases.

Case 1,

yi < for some i.

n

There is a point y" € Bd(co(V)) with y; <y; and yj = y; for all j # i. Let F' be a
face of co(V') containing y'. By Proposition 4.1 there is a point z € V' N F such that
|z = ¥'loc < (n—1)/n. Now for j # i we have |z; — y;| = |z; —y}| < (n —1)/m;
but also |z; — y;| < (n — 1)/n, since

n—1 , n—1
Syi—z; <yi—x; <y <
n n

Hence ||z — y|loo < (n —1)/n.
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Case 2,
-1
(42) Yi > D70 foralli.
n

Let y' be a point in Bd(co(V')) with y} > y; for all j, and let F' be a face of co(V')

containing y’. Again Proposition 4.1 ensures the existence of a point x € VN F

with ||2 — 3'||cc < (n —1)/n. Thus

n—1 n—1
>Yj—

(43) T >y — >0 forallje{l,...,n}.

n
Let (A;)}_; be a partition such that z; = o j(A;),j = 1,...,n. Then (43) implies
that each A; (j =1,...,n) is non-empty. But since there are at most n atoms, this
means that each A; must contain exactly one atom, and therefore x; = p0,;(4;) <1

for all j. Hence

n—1

1
<zj—y; < =< for all 7,
n

n

where the first inequality follows by (43), the second by (42) and z; < 1, and the

last since n > 2. Hence ||z — y||co < (n —1)/n.

It appears that in both cases there is a point z € VN F with ||z —y||cc < (n—1)/n.

Thus we have proved that

n—1

Together with (41), this completes the proof of Theorem 2.5 for a = 1, since € was
arbitrary. The general case a > 0 now follows easily by rescaling, and the case

a = 0 follows by continuity. O

5. APPLICATIONS TO OPTIMAL-PARTITIONING

The objective of this section is to show how Theorem 2.5 can be used to obtain
optimal-partitioning inequalities for measures with atoms. The idea is that many
well-known partitioning inequalities for atomless measures (e.g. [9, 11, 12]) are
proved using the convexity theorem of Dvoretzky, Wald and Wolfowitz (cf. Propo-

sition 2.3), so using Theorem 2.5 instead yields analogous inequalities for the more
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general (atomic) case. To illustrate this we will generalize three well-known par-
titioning inequalities to measures with atoms. The first result is an extension of
classical ’cake-cutting’ results; the other two are generalizations of inequalities of
Elton, Hill and Kertz [5], and Hill [9], and have interesting consequences for the
existence of fair divisions.

The overall framework is a measurable space (2, F), together with probabil-
ity measures p1,...,u,. In the classical ’cake-cutting’ problem (see, e.g. Dubins
and Spanier [2]), where p1, ..., u, are assumed to be atomless, the existence of a
measurable partition (A4;)? ; can be shown such that

(44) min j;(A;) >

i<n

S

A partition satisfying (44) is usually called a ’fair division’.
If the measures p1,-..,u, have atoms, then fair divisions need not exist in
general, but an application of Theorem 2.5 gives the following approzimate fair-

division result:

Corollary 5.1. If u;(E) < a for each i and each atom E of any pj, then there

exists a measurable partition (A;)7, of Q such that

1 n-1
inp;(4;) > — — .
minm(A) 2 5 - =
Proof. 1t is easily seen that PR(ji) contains the n unit vectors ey,...,e,. Hence

co(PR(ji)) contains the point y = (1/n,...,1/n), so by Theorem 2.5 there is an
x € PR(fi) such that ||z — y||cc < a(n —1)/n. This means that each coordinate of

x is at least 1/n — a(n —1)/n. O

Note that a stronger lower bound for probability measures was given by Hill [10],
though the bound of Corollary 5.1 coincides with Hill’s bound for certain values
of a. The advantage of our approach is that it can be used for a much larger
class of partitioning problems (for example, it does not require the measures to be

probability measures).
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Without further assumptions, the constant 1/n in (44) is best possible, but if
wi # p; for some i # j, then there exists a partition satisfying (44) with strict
inequality; a result by Dubins and Spanier. Quantitative generalizations of this
result were proved by Elton, Hill and Kertz [4] and Hill [9], who gave sharp lower

bounds for the optimal-partitioning constant
C= sup{rxgn 1i(A;)|(A4;)i, is a measurable partition of Q}
i<n

in terms of the total masses of the supremum, resp. infimum of the measures. The

next result generalizes their inequalities to measures with atoms. First define

n
\/ ui : the smallest measure dominating each u; (i =1,...,n),
i=1

n
/\ wi ¢ the largest measure dominated by each u; (i =1,...,n),
i=1

and let M := (\/I_, p;) (), and m := (Aj_; i) ().

Theorem 5.2. If u;(E) < a for each i and each atom E of any u;, then
(i) C>mn—M+1)"t—an-1)/n,
(ii) C > (n+m-1)""—alm-1)/n.

Proof. The proof of (i) proceeds as in Legut [12], using Theorem 2.5 where [12]
applies the convexity theorem. In a similar way, the proof of (ii) proceeds as in Hill

[9]. O

As a consequence of Theorem 5.2, we get the following two sufficient conditions for

the existence of a fair division in the sense of (44).

Corollary 5.3. Suppose that either of the following holds for i =1,... n.
(i) wi(E) < (M —1)(n—1)"Y(n— M + 1) for each atom E of u;;
(ii) wi(E) < (m+1)(n—1)"t(n+m —1)"! for each atom E of ;.
Then there exists a measurable partition (A;)7_, satisfying (44).

Proof. Immediate from Theorem 5.2. |
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Example 5.4. If n =3 and M = 2, then if all the atoms of u1, ..., u, have mass

1/4 or less there exists a fair division in the sense of (44).
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