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Abstract

Let X�X�� � � � �Xk be i�i�d� random variables� and for k � IN let Dk�X� �
E�X� � � � � �Xk����EX be the k�th centralized maximal moment� A sharp
lower bound is given for D��X� in terms of the L�evy concentration Ql�X� �
supx�IR P �X � �x� x 	 l
�� This inequality� which is analogous to P� L�evy�s
concentration�variance inequality� illustrates the fact that maximal moments
are a gauge of how much spread out the underlying distribution is� It is also
shown that the centralized maximal moments are increased under convolution�
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� Introduction

Let X�X�� � � � � Xk be independent� identically distributed random variables with �

nite mean and common distribution function F � and let

Mk ��Mk�X� �� EmaxfX�� � � � � Xkg
�

Z
xdF k�x�

���

denote the expected value of the largest order statistic� Such expectations� to be
called maximal moments� have been studied for several decades� a sizeable part of
the literature consisting of bounds for maximal moments in terms of other chara

teristics of the underlying distribution� such as the variance or� more generally� the
p
th absolute moment �cf� Arnold� ����� and Hartley and David� ������ Few
authors� however� have emphasized that the maximal moments themselves� or rather
the di�erences

Dk �� Dk�X� ��Mk���X��M��X� � Mk���X�� EX

can serve as a gauge of how spread out the distribution is� For instance� Dk � �
for some k � � if and only if X is degenerate� the Dk�s are translation
invariant�
that is� Dk�X � b� � Dk�X�� and they are linear� Dk�aX� � aDk�X� for every
a � �� Moreover� D� has the additional desirable property of being symmetric� that
is� D���X� � D��X�� An obvious advantage of maximal moments over for instance
variance is� that they do not require a �nite second moment� all are automatically �

nite when EjXj is �nite� A possible drawback is that their exact values are sometimes
di�cult� if not impossible� to compute� For the standard normal distributionN��� ���
for example� only the �rst �ve are known exactly� though numeric approximations
of higher order maximal moments are available� cf� David� �����

The aim of the present note is two
fold� �rst it will be shown that Dk is increased
by convolution� in correspondence with the intuitive idea that the distribution of a
sum must be more spread out than each of the component distributions� This is
done in Section ��

Section � contains the main result of this paper� a sharp lower bound for D� in
terms of L	evy concentration analogous to P� L	evy�s concentration
variance inequality�
For completeness� bounds in terms of the variance and the �rst absolute moment
about the mean are also given� Section 
 contains a direct application of the main
result to the linear search problem�

� Dk is increased by convolution

Throughout this paper� the following notation will be used� x� y denotes the maxi

mum of x and y� x� � x � � and x� � ��x� � � denote the positive� resp� negative

�



part of x� bxc is the greatest integer less than or equal to x� and for distributions P
and Q� P �Q denotes the convolution of P and Q�

Among other things already summed up in the introduction� one would expect
a candidate measure of dispersion to behave predictably under convolution of the
underlying distribution with another distribution� To illustrate� just consider the
variance identity ��P��P� � ��P� � ��P� � Another example is the L�evy concentration

Ql�P � � sup
x�IR

P ��x� x� l��� ���

it was shown by P� L�evy ������ that for any two distributions P� and P�

Ql�P� � P�� � minfQl�P��� Ql�P��g� ���

The following proposition says that the centralized maximal moments Dk satisfy an
analogous inequality�

Proposition ��� Let P and Q be probability distributions� and k � �� Then

Dk�P � �Dk�Q� � Dk�P �Q� � Dk�P � �Dk�Q�� �
�

Both inequalities are attained if and only if P or Q is degenerate�

Proof� Note �rst that if� for instance� Q is degenerate� then Dk�Q� � � and hence
both parts of �
� hold with equality� Suppose therefore that both P and Q are
non
degenerate� To prove strict inequality� we will use the basic principle that

if W � Z a�s� and Pr�W � Z� � �� then EW � EZ� ���

Let X�� � � � � Xk�� be i�i�d� random variables with distribution P � and let Y�� � � � � Yk��
be i�i�d� with distributionQ� such that �X�� � � � � Xk��� is independent of �Y�� � � � � Yk����
Observe that

Dk�P � � E�X� � � � � �Xk���� EX� � E��X� �X�� � � � � � �Xk�� �X���
��

and similarly�

Dk�P �Q� � E��X� � Y�� � � � � � �Xk�� � Yk����� E�X� � Y��

� E��X� �X� � Y� � Y�� � � � � � �Xk�� �X� � Yk�� � Y���
��

De�ne Ui �� Xi�� �X� and Vi �� Yi�� � Y�� Then Dk�P �Q� � Dk�P � �Dk�Q� is
equivalent to

E��U� � V�� � � � � � �Uk � Vk��
� � E�U� � � � � � Uk�

� � E�V� � � � � � Vk�
�� ���

�



To prove ���� note that for all real numbers u�� � � � � uk� v�� � � � � vk� ��u��v���� � ���uk�
vk��

� � �u� � � � � � uk�
� � �v� � � � � � vk�

�� Since strict inequality holds for example
when ui � � and vi � � for all i� it is su�cient to show that Pr�U� � �� � � � � Uk �
�� V� � �� � � � � Vk � �� � �� By independence of �X�� � � � � Xk��� and �Y�� � � � � Yk����
this probability is equal to Pr�U� � �� � � � � Uk � �� � Pr�V� � �� � � � � Vk � ��� Both
probabilities are positive for similar reasons� e�g� Pr�U� � �� � � � � Uk � �� � Pr�X� �
X�� � � � � Xk�� � X�� � Pr�X� � �� X� � �� � � � � Xk�� � �� � Pr�X� � ��Pr�X� �
�� � � �Pr�Xk�� � �� � � by the non
degeneracy of P � An appeal to ��� yields ����

To prove the other strict inequality� note that Dk�P �Q� � Dk�P � is equivalent
to

E��U� � V�� � � � � � �Uk � Vk��
� � E�V� � � � � � Vk�

�� ���

Observe that since Ui is non
degenerate and EUi � �� there exists � � � such that
Pr�Ui � ��� � �� To prove ���� we �rst show that for all v�� � � � � vk�

E��U� � v�� � � � � � �Uk � vk��
� � �v� � � � � � vk�

�� ���

with strict inequality if � � v� � � � �� vk � �� Fix i such that vi � v� � � � �� vk� Then
E��U� � v�� � � � � � �Uk � vk��

� � E�Ui � vi�
�

� �E�Ui � vi��
� � v�i � �v� � � � � � vk�

��

Here the second inequality is strict if � � v� � � � � � vk � �� because Pr�Ui � vi �
�� � Pr�Ui � ��� � �� This proves ���� and the corresponding strict inequality� To
complete the proof of the Proposition� choose a real number a such that Pr�a � Yi �
a��� � �� Then Pr�� � V��� � ��Vk � �� � Pr�a � Y� � Y��� � ��Yk�� � a��� � �
by i�i�d�
ness of Y�� � � � � Yk��� Apply ���� �

The �rst inequality in �
� may fail if Dk is replaced by the consecutive maximal
moment di�erence dk �� Mk�� �Mk� Notice that d� � D�� d� � d� � D�� etc� The
next example illustrates what can go wrong if k � ��

Example ��� Let P � �

�
�f�g �

�

�
�f�g and Q � �

��
�f�g �

�

��
�f�g� where �fxg denotes

Dirac measure at x� Then P � Q � �

��
�f�g �

�

��
�f�g �

�

��
�f�g� and a straightforward

calculation shows that d��P �Q� � � � �����
��� � ���
 � d��P ��

� Bounds in terms of other measures of spread

In this section sharp upper and lower bounds are given for centralized maximal
moments in terms of other measures of dispersion� including the standard deviation






�� the �rst absolute moment about the mean EjX�EXj� and the L	evy concentration
���� The following sharp inequality is due to Hartley and David �������

Dk � k��k � �������� ���

In particular�

D� � ��
p
�� ����

Equality holds in ��� if and only if X is degenerate �then D� � � � �� or X has a
distribution function G in the location
scale family of F �x� � x��k for � � x � ��
�For a proof of this fact� see the proof of Theorem � in Arnold ������� and note
that D��� is invariant under change of scale or location�� In particular� equality
holds in ���� if and only if X is degenerate or X is uniformly distributed�

Generalizations of the above inequalities were obtained by Arnold ������� who
has sharp upper bounds for Dk in terms of the p
th central moment EjX�EXjp for
p � �� In case p � �� we have the following�

D� � EjX � EXj � �D�� ����

To see ����� note that by symmetry �D� � �E�X� �X��
� � EjX� �X�j� The �rst

inequality in ���� now follows since �D� � EjX��EX���X��EX��j � �EjX�EXj�
The second inequality can be proved as follows�

D� � E�X� �X��
� �

Z
E��X� �X��

�jX� � x� dPX�
�x�

�

Z
E�X� � x�� dPX�

�x� �
Z
�EX� � x�� dPX�

�x�

� E�EX� � x�� � �����EjX � EXj�

Here the inequality follows by applying Jensen�s inequality for the convex function
	x�t� � �t�x��� and the last equality follows using the algebraic identities a��a� �
a and a� � a� � jaj� and the fact that X � EX has mean zero�

The constant � in ���� is best possible� and equality holds for any two
point
distribution�

The following theorem is the main result of this paper�

Theorem ��� For each probability distribution P and for each l � ��

D��P � � l

�
n�n � ��Ql�P �f�� ��n� ��Ql�P �g� ����

where n � b��Ql�P �c� and this bound is sharp�

�



The above lower bound may remind the reader of P� L	evy�s concentration
variance
inequality

��P �
l�

��
n�n � ��f�� ��n� ��Ql�P �g� ����

where n � b��Ql�P �c� In fact� the extremal distributions for ���� and ���� are the
same �see the measures P��l de�ned in the proof below�� and the �rst part of the
proof of Theorem ��� will go along the same lines as the proof of ���� �cf� Foley et

al�� ������

De�nition ��� For a distribution P and a Borel set A � IR with P �A� � �� the
P 
barycenter of A is �P �A����

R
A
xdP �x��

Proof of Theorem ���� Fix P � �x � � � and l � � and let 
 �� Ql�P �� Let
n � b��
c� and de�ne numbers ��k�

�n
k	� by

�k �

�
�� n
� k even

�n� ��
� �� k odd�

Let s�� � � and sk � �� � �� � � � � � �k for k � �� � � � � �n� Note that ��n�k � �k�
and hence s�n�k � �� sk�� �k � �� � � � � �n�� Moreover�

s�j � �� �n� j�
� s�j�� � j
 �j � �� � � � � n�� ��
�

For k � �� � � � � �n� de�ne �zk � kl��� and let P��l be the measure

P��l �
�nX
k	�

�k�f
zkg�

Let M� be the set of all probability distributions �P with Ql� �P � � 
� There exists
P� � M� such that D��P�� � D��P � � �� P� is absolutely continuous with positive
density everywhere� and

R jxjdP��x� �	� �To see this� let Q be a distribution with
everywhere continuous density and D��Q� � � �one such Q is the normal distribution
with mean � and variance ��� in view of ������ De�ne P� �� P �Q� Then Proposition
��� implies D��P�� � D��P � � �� and ��� implies P� � M���

Next� de�ne �	 � r� � r� � � � � � r�n�� �	 by P���r�� r��� � ��� P���r�� r��� �
��� � � � � P���r�n� r�n���� � ��n��� Let z�� � � � � z�n be the P�
barycenters of the intervals
�r�� r��� �r�� r��� � � � � �r�n� r�n��� respectively� and de�ne

P� �
�nX
k	�

�k�fzkg�

�



As inHengartner and Theodorescu ������� p��� it can be shown that P� � M��
Since D� is the integral of the convex function 	�x� y� � �x � y��� the de�nition of
P� and the conditional version of Jensen�s inequality imply D��P�� � D��P��� �An
alternative to using Jensen�s inequality is to observe that P� is a fusion of P� �see
Elton and Hill� ������ and hence P� convexly dominates P��� It will now be shown
that D��P�� � D��P��l��

Since P� � M�� we have zk�� � zk�� � l for all k � �� � � � � �n � �� which by
iteration yields

z�n�k � zk � �n� k�l� k � �� � � � � n� �� ����

Now

D��P�� �
�nX
j	�

zj�s
�
j � s�j����

�nX
j	�

zj�j �
�nX
j	�

zj�j�sj�� � sj � ��

�
n��X
j	�

�zj�j�sj�� � sj � �� � z�n�j��n�j�s�n�j�� � s�n�j � ���

� zn�n�sn�� � sn � ��

�
n��X
j	�

�zj�j�sj�� � sj � �� � z�n�j�j��� sj � sj���� � �

�
n��X
j	�

�z�n�j � zj� �j ��� sj � sj���

�
n��X
j	�

�n� j�l�j��� sj � sj���

�
n��X
j	�

��z�n�j � �zj� �j ��� sj � sj��� � D��P��l��

where the fourth equality follows by symmetry of ��k�
�n
k	�� and the inequality follows

by ���� since �� sj � sj�� � � for j � n� ��
It remains to calculate D��P��l�� Let X� and X� be independent random variables

with distribution P��l� Using Fubini�s theorem in the usual way we can write

EX� �
l

�

�nX
k	�

��� sk�� and E�X� �X�� �
l

�

�nX
k	�

��� s�k��

�



Thus

D��P��l� � E�X� �X��� EX� �
l

�

�nX
k	�

sk��� sk�

�
l

�

n��X
j	�

��� �n� j�
��n� j�
�
l

�

nX
j	�

j
��� j
�

�
l

�

nX
i	�

��� i
�i
�
l

�

nX
j	�

j
��� j
�

� l
nX

j	�


j��� 
j� �
l

�
n�n � ��
��� ��n� ��
��

where the third equality follows by ��
�� We now have

D��P � � � � D��P�� � D��P�� � D��P��l��

Letting � 
 � completes the proof of ����� Although P��l ��M�� taking distributionsP�n
k	� �k�fykg with yk arbitrarily close to the extremal case kl��� and with yk���yk �

l��� shows the bound is sharp� �

Remark ��� If F is the distribution function corresponding to P � then using ���
and Fubini�s theorem we can write

D��P � �

Z �

��

F �x���� F �x�� dx�

Thus an alternative formulation of Theorem ��� isZ �

��

F �x���� F �x�� dx � l
nX

j	�


j��� 
j�� ����

where 
 � Ql�P � � supx�IR�F �x � l� � F �x���� and n � b
c� Despite the striking
similarity between the two expressions in ���� it is not clear how to give a direct
analytical proof of ����� and hence of Theorem ����

� An application to the linear search problem

Beck ����
� describes the linear search problem as follows� �A man in an automobile
searches for another man who is located at some point of a certain road� He starts
at a given point and knows in advance the probability that the second man is at
any given point of the road� Since the man being sought might be in either direction

�



from the starting point� the searcher will� in general� have to turn around many times
before �nding his target� How does he search so as to minimize the expected distance
traveled��

In this section� we will apply Theorem ��� to a di�erent� easier version of the
problem� Suppose the searcher has only a limited amount of time� but is allowed
to start the search wherever he wants� His purpose is to maximize the probability
of �nding the target within the allotted time� Clearly� if there is time for a search
of length l� then this maximum probability is Ql�P �� where P is the probability
distribution on IR that models the likelihood for the target to be at any given point
of the road� The maximum is attained since there exists a point x� � IR such that
Ql�P � � P ��x�� x� � l�� �see Hengartner and Theodorescu ������� Theorem
������� Thus the optimal search plan is to start at x� and search l units to the right�
and the probability of �nding the target using this plan is Ql�P ��

The following equivalent of Theorem ��� gives an explicit sharp lower bound for
Ql�P � in terms of D��P ��

Theorem ����

Ql�P � � �

�
��n� ����

�
� �

�
�� ���n� ��D��P �

�n�n � ��l

������
�

where n is the unique integer such that �n� � ��l � �nD��P � � n�n � ��l� and this

bound is sharp�

Proof� Solve the inequality ���� for Ql�P �� and observe that when Ql�P � � ��n�
the lower bound in ���� is l�n� � �����n��

Example ��� If an object is placed on the real line according to a distribution P
with D��P � � �� then there is a starting point x� and a search of length � starting
at x� that will �nd the object with probability �

�
�� � ��

p
�� � ���
� or more�
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