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Abstract

Let X, X1,..., X be ii.d. random variables, and for k£ € IN let Dy (X) =
E(Xy V-V Xky1) — EX be the k-th centralized maximal moment. A sharp
lower bound is given for Dq(X) in terms of the Lévy concentration Q;(X) =
sup,er P(X € [z,z +1]). This inequality, which is analogous to P. Lévy’s
concentration-variance inequality, illustrates the fact that maximal moments
are a gauge of how much spread out the underlying distribution is. It is also
shown that the centralized maximal moments are increased under convolution.
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1 Introduction

Let X, X4,..., X} be independent, identically distributed random variables with fi-
nite mean and common distribution function F, and let

My, == Mp(X) := Emax{Xy,..., X;}
:/xdFk(x) (1)

denote the expected value of the largest order statistic. Such expectations, to be
called maximal moments, have been studied for several decades, a sizeable part of
the literature consisting of bounds for maximal moments in terms of other chara-
teristics of the underlying distribution, such as the variance or, more generally, the
p-th absolute moment (cf. ARNOLD, 1985, and HARTLEY and DAVID, 1981). Few
authors, however, have emphasized that the maximal moments themselves, or rather
the differences

Dy = Di(X) := M1 (X) = My(X) = Mys1(X) — EX

can serve as a gauge of how spread out the distribution is. For instance, Dy = 0
for some k£ > 1 if and only if X is degenerate; the Dj’s are translation-invariant,
that is, Di(X + b) = Dy(X); and they are linear: Dy(aX) = aDy(X) for every
a > 0. Moreover, D; has the additional desirable property of being symmetric, that
is, D;(—X) = D;(X). An obvious advantage of maximal moments over for instance
variance is, that they do not require a finite second moment: all are automatically fi-
nite when F|X]| is finite. A possible drawback is that their exact values are sometimes
difficult, if not impossible, to compute. For the standard normal distribution N (0, 1),
for example, only the first five are known exactly, though numeric approximations
of higher order maximal moments are available; cf. DAvID, 1981.

The aim of the present note is two-fold: first it will be shown that Dy is increased
by convolution, in correspondence with the intuitive idea that the distribution of a
sum must be more spread out than each of the component distributions. This is
done in Section 2.

Section 3 contains the main result of this paper, a sharp lower bound for D; in
terms of Lévy concentration analogous to P. Lévy’s concentration-variance inequality.
For completeness, bounds in terms of the variance and the first absolute moment
about the mean are also given. Section 4 contains a direct application of the main
result to the linear search problem.

2 Dy is increased by convolution

Throughout this paper, the following notation will be used: =V y denotes the maxi-
mum of x and y, z7 =2V 0 and 2~ = (—z) V 0 denote the positive, resp. negative



part of x, [z] is the greatest integer less than or equal to z, and for distributions P
and @), P x () denotes the convolution of P and Q).

Among other things already summed up in the introduction, one would expect
a candidate measure of dispersion to behave predictably under convolution of the
underlying distribution with another distribution. To illustrate, just consider the
variance identity 0%, ,p, = 0 + 0p,. Another example is the Lévy concentration

Qu(P) = sup P([z,z +1]); (2)

z€lR

it was shown by P. LEvY (1937) that for any two distributions P; and P,

Qu(Py * Py) < min{Qi(Py), Qi(F~)}. (3)

The following proposition says that the centralized maximal moments Dy satisfy an
analogous inequality:

Proposition 2.1 Let P and @ be probability distributions, and k > 1. Then
Dy(P)V Di(Q) < Dp(P * Q) < Di(P) + Di(Q). (4)
Both inequalities are attained if and only if P or Q) is degenerate.

Proof. Note first that if, for instance, @) is degenerate, then Dy (Q)) = 0 and hence
both parts of (4) hold with equality. Suppose therefore that both P and @ are
non-degenerate. To prove strict inequality, we will use the basic principle that

it W>Z7Z as. and Pr(W>2Z2Z)>0, then EW >EZ. (5)

Let Xy,..., Xjy1 beiid. random variables with distribution P, and let Yy, ..., Y11
bei.i.d. with distribution @, such that (X7, ..., X;11) isindependent of (Y7, ..., Y1)
Observe that

Dk(P) — E(X1 V-V Xk+1) — EXI = E[(XZ — Xl) V-V (Xk+1 - Xl)]+7
and similarly,

Dp(P+Q)=E[(X1 +Y1) V.-V (Xpp1 + Vi) — E(X1 + Y1)
=E[(Xo— X1 +Yo—Y) V-V (Xp1 — X1 + Yy — Y9

Define U; := X;,1 — Xy and V; := Y1 — V7. Then Dy (P x Q) < Di(P) + Dp(Q) is
equivalent to

E(U+WV) V- VU, + V)T <EU V- -VU)T+EWViV---VV)T.  (6)



To prove (6), note that for all real numbers uy, ..., ug, vy, ..., v, [(u1+v)) V-V (up+
o))t < (ur V- Vaug)t 4 (v Voo - V)T Since strict inequality holds for example
when u; < 0 and v; > 0 for all 4, it is sufficient to show that Pr(U; < 0,...,U; <
0,V; >0,...,Vx > 0) > 0. By independence of (Xi,..., Xyy1) and (Y3,..., i),
this probability is equal to Pr(U; < 0,...,U, < 0)- Pr(V; > 0,...,V; > 0). Both
probabilities are positive for similar reasons, e.g. Pr(U; <0,...,U; <0) = Pr(X, <
Xl;---an—i—l < Xl) > P?"(Xl > 0,X2 < 0,...,Xk+1 < 0) = PT(X1 > O)PT(XQ <
0)---Pr(Xgs1 < 0) > 0 by the non-degeneracy of P. An appeal to (5) yields (6).

To prove the other strict inequality, note that Dy (P * Q) > D (P) is equivalent
to

E(U+V) V-V U+ V)P > EVL V- - V)T (7)

Observe that since U; is non-degenerate and EU; = 0, there exists € > 0 such that
Pr(U; < —e) > 0. To prove (7), we first show that for all vy, ..., v,

E((U +v) V- VU, +w)]T> (V- V)T, (8)
with strict inequality if 0 < v; V---V v < e. Fix ¢ such that v; = v; V---Vwvg. Then

E[(Ul + ’U1) V...V (Uk + Uk)]+ > E(Ul —|—’UZ')Jr
>[EU; +v)]  =v =@, V- V)"

Here the second inequality is strict if 0 < vy V .-+ V vy < &, because Pr(U; + v; <
0) > Pr(U; < —e) > 0. This proves (8), and the corresponding strict inequality. To
complete the proof of the Proposition, choose a real number a such that Pr(a < Y; <
a+e) > 0. Then Pr(0 < ViV---VVp <e) > Pria<Y; <YoV---VYi <a+e) >0
by i.i.d.-ness of Y7,...,Y,i1. Apply (5). O

The first inequality in (4) may fail if Dy is replaced by the consecutive maximal
moment difference dj, := My, — My. Notice that dy = Dy, dy + dy = D, etc. The
next example illustrates what can go wrong if £ > 2.

Example 2.2 Let P = %5{0} + %5{1} and QQ = %05{0} + 19—05{1}, where dy,; denotes

Dirac measure at x. Then P x Q) = 4%6{0} + 1—705{1} + %5{2}, and a straightforward
calculation shows that dy(P * Q) =9 -998/64000 < 9/64 = dy(P).

3 Bounds in terms of other measures of spread

In this section sharp upper and lower bounds are given for centralized maximal
moments in terms of other measures of dispersion, including the standard deviation



o, the first absolute moment about the mean F|X — EX |, and the Lévy concentration
(2). The following sharp inequality is due to HARTLEY and DAvID (1981):

Dy, < k(2k +1) 20, (9)
In particular,
D, < o/V3. (10)

Equality holds in (9) if and only if X is degenerate (then D; = o = 0) or X has a
distribution function G in the location-scale family of F'(x) = 2'/* for 0 < z < 1.
(For a proof of this fact, see the proof of Theorem 3 in ARNOLD (1985), and note
that D /o is invariant under change of scale or location.) In particular, equality
holds in (10) if and only if X is degenerate or X is uniformly distributed.

Generalizations of the above inequalities were obtained by ARNOLD (1985), who
has sharp upper bounds for Dy, in terms of the p-th central moment F|X — EX|P for
p > 1. In case p = 1, we have the following:

D, < E|X — EX| < 2D;. (11)

To see (11), note that by symmetry 2D; = 2F (X, — X;)" = E|X; — X;|. The first
inequality in (11) now follows since 2D; = E|X;—EX,— (X1 —EX;)| < 2E|X —-EX]|.
The second inequality can be proved as follows:

Dy = B(X; — X1)* = /E[(X2 ~ X)X, = 2] dPy, (2)
_ / E(X, — 2)* dPy, (z) > / (EX, — 2)* dPx. (x)
_ B(EX, —2)* = (1/2)E|X — EX]|.

Here the inequality follows by applying Jensen’s inequality for the convex function
¢:(t) = (t—x)T, and the last equality follows using the algebraic identities a™ —a~ =
a and a™ + a~ = |a|, and the fact that X — EX has mean zero.

The constant 2 in (11) is best possible, and equality holds for any two-point
distribution.

The following theorem is the main result of this paper.

Theorem 3.1 For each probability distribution P and for each | > 0,
[
Di(P) 2 gn(n+1D@Q(P){3 = 2n+1)Qu(P)}, (12)
where n = |1/Q,(P)], and this bound is sharp.
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The above lower bound may remind the reader of P. Lévy’s concentration-variance
inequality

op > %n(n +1){3—(2n+1)Q(P)}, (13)

where n = [1/Q;(P)]. In fact, the extremal distributions for (12) and (13) are the
same (see the measures Py; defined in the proof below), and the first part of the

proof of Theorem 3.1 will go along the same lines as the proof of (13) (cf. FOLEY et
al., 1990).

Definition 3.2 For a distribution P and a Borel set A C R with P(A) > 0, the
P-barycenter of A is (P(A)) " [, vdP(z).

Proof of Theorem 3.1. Fix P, fix ¢ > 0 and [ > 0 and let A := @Q;(P). Let
n = |1/\], and define numbers ()2, by

B, = 1 —nA, k even
"Tl+1A-1, kodd

Let s.y =0and sp = By + 61+ -+ B for k =0,...,2n. Note that fBs,_r = Gy,
and hence sy, p =1—s,_1 (k=0,...,2n). Moreover,

82]:1—(71—]))\, SQj—1:j>\ (]:Oaan) (]‘4)

For k =0,...,2n, define 2, = kl/2, and let Py, be the measure

2n
Pyi=Y Bibizy-
k=0

Let M, be the set of all probability distributions P with @Q,(P) < A. There exists
P, € M, such that D;(P;) < D;(P) + ¢, P, is absolutely continuous with positive
density everywhere, and [ |z|dP;(z) < co. (To see this, let @ be a distribution with
everywhere continuous density and D;(Q) < ¢ (one such @ is the normal distribution
with mean 0 and variance €%, in view of (10)). Define P, := P*(@Q. Then Proposition
2.1 implies Dy (Py) < Dy(P) + ¢, and (3) implies P, € M,.)

Next, define —oo = ry <1y < --- < r9yyy =00 by Pi((ro,71)) = fo, Pi([r1,72)) =
By Pi([ron, rons1)) = Bony1- Let 2o, ..., 22, be the Pi-barycenters of the intervals
(ro, 1), [r1,72), - -+, [Fon, T2nt1) Tespectively, and define

2n
P, = Zﬂkd{zk}-
k=0



As in HENGARTNER and THEODORESCU (1973), p.28 it can be shown that P, € M.
Since D; is the integral of the convex function ¢(x,y) = (r — y)*, the definition of
P, and the conditional version of Jensen’s inequality imply D;(P;) > Di(P,). (An
alternative to using Jensen’s inequality is to observe that P, is a fusion of P; (see
EvTon and HiLw, 1992), and hence P; convexly dominates P,.) It will now be shown
that D1 (PQ) Z Dl(P/\,l).

Since P, € M), we have 2,1 — 2y > [ for all £ = 1,...,2n — 1, which by
iteration yields

Zonk — 2k > (n—kK), k=0,...,n—1. (15)
Now
2n 2n 2n
Di(P) =Y z(s] =55 1) = > 2B =Y 2iBi(sjm1 + 5, — 1)
=0 =0 =0
n—1
=Y (285 (sjm1 + 55 = 1) + 200 Bon—j(sm—j1 + $2m—; — 1)]
=0

+ Znﬁn(sn—l + Sp — 1)
n—1

=D [eBi(sj1+55 = 1) + 2030 (1 = 55— 5;-1)] + 0

—~ o

S .

(22n—5 — 24) B (1 — 85 — 55-1)

I
(]

S .
_ O

Y (=i — 55— s5-1)

v

n—

= (Banj — %) B; (1 — 5, — 5;1) = D1(Pay),

§=0

where the fourth equality follows by symmetry of ()%™, and the inequality follows
by (15) since 1 —s; —s;_1 > 0 for j <n —1.

It remains to calculate Dy (Py;). Let X; and X, be independent random variables
with distribution P, ;. Using Fubini’s theorem in the usual way we can write

2n 2n
[

EX, = éZa Ss),md B V)= 3 (18

k=0 k=0



Thus

2n

Dy(Py) = E(X,V X,) — EX,| = é; sp(1 — 1)
D B ICI) PR PEES AV R

= é;u — GA)iA + é ;j)\(l —jA)
= lzn:)\j(l —\j) = én(n + DAB = (2n+ 1)N),

where the third equality follows by (14). We now have
Dl(P) + ¢ Z Dl(Pl) 2 Dl(PQ) Z DI(P)\J).

Letting € | 0 completes the proof of (12). Although Py; ¢ M,, taking distributions
Ziio Brdgy,y with y,, arbitrarily close to the extremal case kI/2, and with 41—y >
[/2, shows the bound is sharp. O

Remark 3.3 If F' is the distribution function corresponding to P, then using (1)
and Fubini’s theorem we can write

Dy(P) = /_Oo F()(1 - F(z)) dz.

o0

Thus an alternative formulation of Theorem 3.1 is

| F@a - F@)de =13 a0 - ) (16)

where A = Q;(P) = sup,cr(F(r+1) — F(27)), and n = [A|. Despite the striking
similarity between the two expressions in (16) it is not clear how to give a direct
analytical proof of (16), and hence of Theorem 3.1.

4 An application to the linear search problem

BECK (1964) describes the linear search problem as follows: “A man in an automobile
searches for another man who is located at some point of a certain road. He starts
at a given point and knows in advance the probability that the second man is at
any given point of the road. Since the man being sought might be in either direction
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from the starting point, the searcher will, in general, have to turn around many times
before finding his target. How does he search so as to minimize the expected distance
traveled?”

In this section, we will apply Theorem 3.1 to a different, easier version of the
problem. Suppose the searcher has only a limited amount of time, but is allowed
to start the search wherever he wants. His purpose is to maximize the probability
of finding the target within the allotted time. Clearly, if there is time for a search
of length [, then this maximum probability is Q;(P), where P is the probability
distribution on IR that models the likelihood for the target to be at any given point
of the road. The maximum is attained since there exists a point o € IR such that
Qi(P) = P([xo,z0 +1]) (see HENGARTNER and THEODORESCU (1973), Theorem
1.1.8). Thus the optimal search plan is to start at o and search [ units to the right,
and the probability of finding the target using this plan is Q;(P).

The following equivalent of Theorem 3.1 gives an explicit sharp lower bound for
Qi(P) in terms of D, (P).

Theorem 3.1°

Qu(P) > S(2n+1)""

3
2

1+ <1 _8(2n+ l)Dl(P)>—1/2] |

3n(n+ 1)l

where n is the unique integer such that (n?> — 1)l < 6nDy(P) < n(n + 2)I, and this
bound is sharp.

Proof. Solve the inequality (12) for @;(P), and observe that when Q;(P) = 1/n,
the lower bound in (12) is [(n? — 1)/(6n).

Example 4.1 If an object is placed on the real line according to a distribution P
with D;(P) = 2, then there is a starting point 2o and a search of length 3 starting
at o that will find the object with probability (14 1/v/5) & 0.24, or more.
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