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Abstract

Minimax risk inequalities are obtained for the location-parameter classification problem.
For the classical single observation case with continuous distributions, best possible bounds
are given in terms of their Lévy concentration, establishing a conjecture of Hill and Tong
(1989). In addition, sharp bounds for the minimax risk are derived for the multiple (i.i.d.)
observations case, based on the tail concentration and the Lévy concentration. Some fairly
sharp bounds for discontinuous distributions are also obtained.



1 Introduction

In the classification problem, in its standard form, an observation X is given and the statis-
tician’s task is to guess from which of several specified distributions it comes. More precisely,
if Fy,...,F;, are probability distributions on the real line and X is a random variable having
unknown distribution F', then a test for testing the hypotheses

Hi:F:Fi, i:l,...,n

is sought which achieves the minimax risk, i.e. minimizes the largest probability of misclassifi-
cation.

As a practical example, one might think of scoring systems used in mental health, where it is
assumed that patients from different socio-psychological backgrounds score essentially differently
on a certain psychological test, and the psychiatrist’s task is to recover the patient’s background
from his score.

Another example is the so-called two-armed slot machine problem: if the arms of a two-armed
slot machine have different payoff distributions, then the gambler at some point has to decide
which arm gives him the best average payoff, and pull this arm only from then on.

The two-armed slot machine problem has far-reaching implications in the medical world,
where the two arms represent two different drugs that are to be tested, and giving the wrong
drug to a patient may have fatal consequences.

This paper focuses on the special case of the classification problem where the shape and
scale of the distribution F' are known, but the location is unknown. It answers affirmatively a
question raised by Hill and Tong [6] (see also Open Problem no. 11 in [7]), who give best possible
bounds for the minimax risk in terms of the tail d-concentration p (definition 2.3 below) in case
F' is continuous, and ask whether the same inequality holds when p is replaced by the Lévy
concentration A. Hill and Tong show that the inequality does hold when n = 2, and Section 3
of this paper combines their ideas and an induction principle to prove the result for general n.
As a corollary, a non-trivial bound is obtained for the minimax risk in terms of variance.

The second main result of this paper is Theorem 5.1, which gives a sharp bound for the
minimax risk in terms of the tail d-concentration in case several i.i.d. observations are available.
From this inequality, a sufficient condition can be derived on the number of observations in order
for the minimax risk to be less than a given confidence level.

The organization of this paper is as follows. Section 2 contains preliminaries and relates
multi-hypotheses testing to the theory of optimal-partitioning, an important tool of which is the
convexity result by Dvoretzky, Wald and Wolfowitz [2], which is stated in Proposition 2.2.

Section 3 then solves the conjecture by Hill and Tong, with their theorem for the tail d-
concentration as a corollary. In addition, a non-trivial bound is given in terms of the variance.

The case of measures with atoms is considered in Section 4. First it is shown that if ran-
domized decision rules are allowed, then the bounds from Section 3 still hold. A minimax risk
inequality is then given for the case where randomizing is not allowed. This bound follows from
Theorem 3.1 and a generalization of Proposition 2.2 to measures with atoms.

Section 5, which studies classification based on multiple observations, gives a sharp minimax
risk inequality in terms of the tail d-concentration, and shows that the same bound fails for
Lévy concentration if the number of observations is at least two.

2 Notation and basic tools

Throughout this paper, u, p1, - .., u, will always denote (countably additive) probability mea-
sures on (IR,B), the real line equipped with the Borel o-algebra. The corresponding distribution



functions of u, p1,...,1, Wwill be denoted by F), Fi, ..., F,, respectively.
For a sequence of measures p1,...,in, the vector measure i = (p1,...,pn) is defined by

fi(A) := (p1(A), ..., un(A)) €R",  A€B.

For a probability measure u, a set E € B is an atom of p if u(E) > 0 and for all F C E, F €
B:u(F)=0or u(F) = u(E); A measure is called atomless if it does not have any atoms. Note
that a measure g on (IR,B) is atomless if and only if u({z}) = 0 for all x € IR. By a general
probability measure will be meant any probability measure on (IR,B), atomless or not.

A (measurable) partition is an ordered collection (A4;)® ; of Borel-measurable subsets of IR
such that 4;NA; =0 for all i # j, and J;—, 4; = R.

In testing the multiple hypotheses

Hi :F = Fi, 1= ]., Ny (].)

a decision rule corresponds to a partition (A;)"; such that H; is accepted if and only if X € A4;.
The i-th risk of a decision rule (A;)?, is defined by

Ri((A))f=1) = Prob(X ¢4; | H;) = 1 — pi(4i),
and the minimaz risk for the hypotheses (1) by

inf{lrél%xn Ri((4;)7=1) | (Aj)j= is a decision rule} = 1 — C}(fi),
where

Cr(in) = sup{lrgljg wi(A;) | (A;)in, is a partition of IR}.

Stsn

Thus the problem of testing multiple hypotheses is equivalent to one of fair division, i.e. parti-
tioning an object (in this case the real line) among n persons so that the minimum share of all
persons, according to their own respective measures, is as large as possible. It is in this setting

that most of the results in this paper will be stated and proved.
An important notion in the theory of fair division is the partition range:

Definition 2.1 For a vector measure ji = (ju1,...,4n ), the partition range PR(f) is defined by
PR i= {(11(A1), s pin(An) | (Ai)1y s a partition of R},
The following result is a fundamental tool in this article.

Proposition 2.2 [Dvoretzky, Wald and Wolfowitz (1951)]. If pi,...,un are atomless, then
PR(fE) is compact and convez.

Most of the bounds in this paper will be some function of one of the following two concen-
trations.

Definition 2.3 For a probability measure p and a positive real number d,

(1) the tail d-concentration p(u,d) is defined by
p(p, d) = max{p((—oo,ess inf pu + d)), p((ess sup p —d, 00))}, and
(7i) the Lévy d-concentration A(u,d) is defined by

Ap, d) = jlelgu((m, T +d)).



Note that by definition, A(u,d) > p(u, d). Furthermore, it is not difficult to see that A\(u,d) >
0 for all d > 0. Although A := A(u,d) need not be attained in general, the next lemma says
that A is always attained by half open intervals (see, e.g. Theorem 1.1.8 and the remark at the
bottom of p.9 of Hengartner and Theodorescu [5]).

Lemma 2.4 For all X := A(u,d) > 0, there exists an © € R such that either u((z,z +d] = A
or (i +d)) = A

If X is close to zero, then the distribution p is very flat. On the other hand, if X is close
to one, then p is essentially concentrated on an interval of length d. Thus Lévy concentration,
like variance, provides a measure of how spread-out a distribution is. In fact, using a slightly
different definition of Lévy concentration, the following concentration-variance inequality holds;
here A°(4, d) := sup, ey fi([z, @ + d).

Proposition 2.5 [Lévy (1937) - see also [5], p. 27] For every probability measure u with finite

; 2
variance UM’
2

72> Eom(m + )3 X () - (2m + 1),

where m = max{j € IN : j < [\°(u,d)]"'}. Equivalently,

3 4 o
(1- ), (2)

m(m + 1)

N, d) 2 f(0%d) = 5

where m € IN is such that %(m2 -1) <o, < %(m2 +2m).

Note that for atomless distributions, the two definitions of Lévy concentration coincide, and
the above inequalities hold also for A(u,d). It is not known to the author whether A can be
replaced by A in Proposition 2.5 for general distributions.

Roughly speaking, Proposition 2.5 says that a small variance implies a large value of the
Lévy concentration. The converse is false: a distribution with Lévy concentration close (but not
equal) to one can still have arbitrarily large variance, as the following example shows:

Example 2.6 Let ¢ > 0 be given, and let u be the measure p = (1 —€)dg0} + dyary, for
some M > 0 where 0,y is the Dirac measure on . Then A(u,d) = 1 —¢ for all d > 0, but
ai =¢e(1—¢)M?. Since M is arbitrary, it follows that the variance of u can be arbitrarily large.

Inequality (2) will be used in the next section to derive a bound on the minimax risk in
terms of the variance.

For the remainder of this article, it will be assumed that p1,...,u4, belong to the same location-
parameter family, and have equally spaced location parameters. That is, there exist a probability
measure g and a real number d > 0 such that

wi(A) = p(A — (i —1)d), i=1,...,n, A€DB, (3)

where A —z={a—x:a€ A}

3 Atomless distributions

The main result of this section is the following theorem.



Theorem 3.1 If u is atomless, then

-1
n—1

Cr(@) > | =N (4)

j=0
where A = A, d) is the Lévy d-concentration of u. This bound is attained for all n,\ and d.
Remark 3.2 Inequality (4) was proved by Hill and Tong [6] for the special case n = 2.

Corollary 3.3 [Hill and Tong (1989), Theorem 2.2] If i is atomless, then

-1
n—1

o) > | SS-py| (5)

j=0
where p = p(u,d) is the tail d-concentration of p, and this bound is attained for all n,p and d.
Proof: (5) follows immediately from (4) since the right hand side in (4) is increasing in A, and

since A > p. The sharpness of (5), and hence of (4), will be demonstrated in Section 5 as a
special case of Example 5.2. O

Corollary 3.4 If i is atomless, then

Co(f) = rg:l(l—f(aiad))j} ,

Jj=0

2

where o,

is the variance of p and f(ai,d) is defined as in (2).
Proof: Immediate from Proposition 2.5 (and the remark following it) and Theorem 3.1. O

Example 3.5 Let p be the normal distribution with mean 0 and variance 1, and d = 1. Then
A = Ap,d) = 0.3829, and the bounds in (4) for n = 2,3,4 and 5 are 0.618,0.500,0.448 and
0.421, respectively.

If d =1 and p is any continuous distribution with variance 1, then (2) yields A = A(u,d) >
2/7, hence the right hand sides in (4) for n = 2,3,4 and 5 are at least 0.583,0.450,0.386 and
0.350, respectively.

The proof of Theorem 3.1 uses the following lemma, which also holds for measures with
atoms (a fact that will be needed in Section 4).

Lemma 3.6 For eachn € IN, PR(fi) contains a vector § of the form §:= (r+ X\ \,...,\,1—r) €
R" for some r € [0,1 — \], where A = A(u, d).

Proof: By Lemma 2.4 there exists a v € IR such that either u((y,v+d]) = X or u([y,v+d)) = \.
If u((y,v+d] = Xlet r = pu((—o00,7]) and consider the partition

((_0077 + d]a (’Y + d,’)/ + 2d]7 Ty (’Y + (TL - 2)d57 + (TL - l)d]7 (’Y + (TL - 1)d7 OO)),
else let 7 = p((—00,7)) and consider the partition

((_0077 + d)) [’Y + d>'7 + 2d)> ) [’7 + (n - 2)d77 + (n - l)d)v [’7 + (n - l)da OO))
In both cases it follows that §€ PR(ji). O



Proof of Theorem 3.1 Let ¢, := ¢, () := [Z?:_Ol(l — A7 Ifn =1, then ¢, = ¢; = 1 and
the conclusion of Theorem 3.1 is trivial. The proof now proceeds by induction. For each n € IN,
let fin := (i1, ..., tn)- Suppose that (4) holds for some n € IN. By the compactness of PR(fiy)

(Proposition 2.2) there exist measurable partitions (4;)?; and (B;)", such that

a; = pi(4;)>e¢n, i=1,...,n, and

b, = ,uZ(BZ) >cCp, 1=2,.,n+1.
Setting A, +1 = By = 0, it follows that @ := (as,...,an,0) and b= (0,b2, ..., byt1) are both in
PR(ﬁnJrl)'

By Lemma 3.6 (applied to n+ 1), PR (ji,+1) also contains the vector §:= (r+ A A, ..., A, 1 —

r) € R, for some r € [0,1 — A]. Now let t; = (1 — 7 — N)c; 'cny1, ta = 7 cpy1 and
ts3 = Cn+1- Then t; Z 0, 1= 1,2,3 and

ti+ta+t3={(1—=Nc,' + 1}ensn = 1,
and hence Proposition 2.2 implies that

U:=td+ t25+ 135 € PR(ﬁn+1),

i.e. there exists a partition (E;)?2' of IR such that

/’Ll(El) = Ui, 7::17"'7”+17

where

v = tag+t3(r+A) > (1 —7—Nept1 + 1 (T + A) = cpga;

v;i = tra; +teb; +t3A > (1 —1r — N)epg1 + renp1 + cpi A = g1, 0=2,...,1m;
and

Unt1 = tobpyr +t3(1—7) > reppr + (L —7)ent1 = Cpga-

Thus the conclusion of Theorem 3.1 also holds for n + 1. O

Remark 3.7 Note that the key idea of the proof of Theorem 3.1 was to find several ‘good’
vectors in the partition range of ji, and then use convexity to find a point on the diagonal
{(n,m,...,n) : n € [0,1]} lying ‘far’ away from the origin. This idea, which is a characteristic
aspect of the proofs of many partitioning inequalities (e.g. [6], [8]), will return many times
throughout the remainder of this paper. Finding vectors which work is often a matter of trial
and error.

4 General distributions

If the measure p has atoms, then the conclusion of Theorem 3.1 may fail in general, as the
following simple example shows.

Example 4.1 Let n = 2 and d = 1, and let i be the Bernoulli distribution u = %5{0} + %6{1}.
It is clear that C3(fi) = 3, while A = A(u,d) = § and hence ¢;(\) = 2 > L.

However, if the statistician is allowed to base his decision not only on the observation X,
but also on the outcome of some external experiment, like picking a number at random from
the unit interval, then he can do just as well as in the atomless case.

To make this more precise, let () be the uniform distribution on (0, 1) and let U be a random
variable with distribution @, independent of X. A randomized decision rule corresponds to a
partition (A4;)"; of Rx (0, 1) such that H; is accepted if and only if (X, U) € A;. The randomized
risk set is the partition range of the vector measure (1 X @, ..., X @) on R x (0, 1).



Lemma 4.2 [Ferguson (1967), Lemma 1.7.1] The randomized risk set is convex.

Theorem 4.3 Let i be a general probability measure with Lévy d-concentration A\, X a random
variable with unknown distribution F', and U a uniform (0,1) variable independent of X. Then
there exists a test based on the pair (X,U) for testing the hypotheses (1), which has minimax

risk at most

-1
n—1

j=0
and this bound is attained.

Proof: Follow the proof of Theorem 3.1, but now lift all partitions to partitions of IR x (0,1) via
the mapping A — A x (0,1). Lemma 4.2 plus the same arguments as before imply the existence

of a partition (4;)";) of R x (0,1) such that
(i % Q)(A) > ca(N), i =1,.m,
so that the corresponding risks are
R((A)y) = Prob((X,U) ¢A; | H)) =1 (i x Q)(A,)
< 1—cy(N), i=1,..,n.

The bound is attained by the same distribution which attains the bound of Theorem 3.1 (see Ex-
ample 5.2). This follows from the well-known fact that for continuous distributions randomized
decision rules do not perform better than non-randomized decision rules (e.g. [2], §4). O

If randomized decision rules are not allowed, then in many cases non-trivial bounds can still
be obtained. For example, Gouweleeuw [4] gives sufficient conditions on the atoms of a vector
measure i such that PR() is convex, in which case the bound in (4) still holds. A different
approach may be based on the following idea: if the atoms of ji are small, then the partition
range PR(ji) is "almost convex”, and the bound in Theorem 3.1 is almost attained.

For a vector + € R", let ||z]| := maxi<i<n |%;| denote the [**-norm of z. For a set
A C R" and a point € R", let doo(z, A) := infyca ||z — y||~ denote the [*°-distance from
z to A, and for any subset A C IR", let Doo(A) := sup{deo(z, A) : z € Conv(A)} denote the
Hausdorff-co-distance from A to its convex closure.

The next theorem, which is taken from [1], improves the bound of Theorem 3.2 in [6].

Theorem 4.4 Let V = (v1,...,vy), where vi,...,v, are finite non-negative measures. If
vi(E) < « for every atom E of v; and all i, then
n—1
Do (PR(7)) < a,

and this bound is attained for all a > 0.

Together with a slightly modified proof of Theorem 3.1, this implies the following inequality
for probability measures with a bounded atom size.

Theorem 4.5 Let u be a general probability measure. If u(E) < « for every atom E of u, then

Ci) > en(n) - L

where A = A, d).

Q,

Remark 4.6 The author does not know if this inequality is sharp.

Example 4.7 Let n = 3,A = 1/2 and o = 1/10. Then the right hand side above evaluates to
e3(1/2) — 1/15 =~ 0.505.



5 Multiple observations

In the previous sections, only the classical form of the classification problem with a single obser-
vation was studied. In many practical situations, however, a sequence X7, ..., X of observations
will be available, and one would expect to be able to reduce the maximum risk by using the
information contained in the full vector (X7, ..., Xj) instead of only that of X;.

What happens in the classification problem when several observations are available? It turns
out that optimal partitioning is again the proper background, but now decision rules correspond
to partitions of RE.

For the remainder of this section, X7, ..., X} are independent, identically distributed random
variables with common distribution F. Let B* denote the product o-algebra B x B x ... x B on
IR*. A decision rule for the hypotheses (1) corresponds to a B*- measurable partition (4;)7,
of IR such that H; is accepted if and only if (X1,...,X)) € A;. For a measure p on IR, and
k € IN, let p* denote the k-dimensional product measure determined by

pF(Ey x ... x Ey) = u(By) - ... - u(Ey),
for all Ey, ..., E € B. Then the i-th risk of a decision rule (4;)?, is
Ri((Aj)=y) = Prob((X1, ., Xp) s | Hi) = 1 - p(Ay),
and the minimax risk is

inf{lrgia%xn Ri((4;)7=1) | (Aj)j=; is a decision rule} = 1 — C}, ; (fi),

where

* (1) = sup{ min pk(4;) | (A;)}-; is a partition of R¥}.
’ 1<i<n

Thus the problem of testing the multiple hypotheses (1) using an i.i.d. sequence of k obser-
vations is equivalent to partitioning the space IR® among the n measures p¥, ..., uk .
The next theorem is the k-dimensional analogue of Corollary 3.3.

Theorem 5.1 If u is atomless with tail d-concentration p, then

-1
n—1

ne(@ > D A=pM | (6)

j=0
and this bound is attained for all n,k,d and p.

Proof: The proof is analogous to the proof of Theorem 2.2 of Hill and Tong [6].

If p = 0, then the bound in (6) is 1/n and inequality (6) holds for any atomless distributions
[y ey o, (cf. [7], §3). Suppose that 0 < p < 1. Then ess inf u > —oo or ess sup p < 00, and
by translation it may be assumed that one of these, say ess inf p, is zero and that u([0,d)) =
pi1((—00,d)) = p.

For i =1,...,n, let B; be defined by

B; == [(i — 1)d, 00)",

and for each m,1 < m < n, let the partition (A7), be defined by

(3
Bi\Bi—i-la 1= 1,...,m—1

A" =< B, i=m
0, i=m+1,..,n.



Then {di,...,an} C PR(ji*), where
k

is the vector in R" with 1 in the m-th coordinate and preceded by m — 1 entries of 1 — (1 — p)*.
Let B, = (1 — p)kn=m) > o(1=p)¥ m =1,...,n. Then by Proposition 2.2,

=Y Budim € PR(E"),
m=1

and a straightforward calculation shows that each entry of @ is [E?:_OI (1 — p)kd]—1L.

To see that (6) is best possible for p = 0, let g = pps be the uniform distribution on [—M, M].
Then as M — oo, p(p,d) — 0and C};, . (fi) — 1/n. For p =1, the bound in (6) is 1 and therefore
trivially attained. That (6) is attained for all n, k and d and all p € (0,1) is shown by the next
example. O

Example 5.2 Let p € (0,1), d >0, kK € IN and n > 2 be given and let a be the unique number
such that 1—e=% = p. Let F(2) = 1—e~*® forz > 0 and let Fj(z) = F(z—(i—1)d),i=1,...,n
Then the corresponding density functions are

fi(z) = e~ @D for 2> (j —1)d

and zero otherwise for i = 1,...,n. Clearly F has p(F,d) = A(F,d) = p. Moreover, it is easily
checked that, letting ¢ := 1 — p,

fi(x) > ¢ fi(x) forall z€ R, i=1,..,n. (7)
Now let (4;)™, be any partition of R*. Then by (7),

Summing over 7 gives

qul)ktgla

but this implies that

—1

n .
qu(zl)] O
=1

Analogous bounds in terms of Lévy concentration for general n and k are not known to
the author. However, the following special case shows that things may change radically in the
multiple observations case.

- k
min A;) <
1§i§nlu’z ( 1) =

Theorem 5.3 If u is atomless, then

. 14+ A
C2,2(,U) > 9

where A = A, d), and this bound is attained for all X € (0,1].



Proof: Let v and r be defined as in the proof of Lemma 3.6. By symmetry it can be assumed
that r > (1—X)/2. Considering the partitions (4, A¢) of R? given by A = ), A = (—o0, 7+d] xR,
and A = (—o0,v + d]?, respectively shows that PR(ji*) contains the vectors #; = (0,1), T =
(r+ X, 1—r)and @ = ((r + A\)?,1 —r?). Now distinguish two cases.

Case 1, (r + \)? < 1—r2. Let

B 1—7r2— (r+\)? r+A-(1-r)
Cr(l=r)+ (r+AN)(1—r—=X) r(l—r)+(r+A)1—-r—X)

Then clearly as+a3 = 1, and by the assumptions on 7, s > 0 and ag > 0. Hence by Proposition
2.2 PR(fi?) contains the vector @ := aa¥ + a3v3. An easy calculation gives @ = (¢, c), where
A =r)(1 =X t
ey VA=Y )
rl—r)+ (T +N1-=r—=X) " n(r)
where t(r) and n(r) are defined in the obvious manner.

To show that this is at least 22, it is enough to show that ¢(152) = 112 and that c(r)
is increasing in r for r > % The first is an easy substitution; the second follows since
n'(r) = 2¢'(r) = 2(1 — 2r — \) (where ' denotes derivative with respect to r) and hence (nt' —
tn")(r) = (1 — 2r — X)(n(r) — 2t(r)) > 0, since both factors are non-positive. Thus ¢'(r) > 0 for

and a3 =

Q2

all r > %
Case 2, (r + \)? > 1 —r?. Let
(r+X)2—(1-12 1
= d =
& (r+XA)2+r2 and 3 (r+A)?2+r?

Then 3; > 0,33 > 0 and 31 + 83 = 1, and Proposition 2.2 gives @ = 3,7 + 3303 € PR(ji?).
Computing o yields & = (¢, ¢), where

()} =027

21-1 1+A
{1+1-=N% 1A+ =N(1 -2
1+ A
= T)
where the first inequality follows since r <1 — A.
The following example shows that the bound % is attained for every A € (0,1]. O

¢ =¢(r)

v

Example 5.4 Let T~ be the left halfplane {(z,y) € R? : x < 0} and H" := R*\IH . Let u
be the distribution with density f given by f(z) =3_,c4 )\(};—i)ml[j’jﬂ)(x). Then A\(u,1) = A
and for any partition (A4, A°) of IR?,

dmin{u2(4), 12(A%)} < p2(A) + 3(A%)
/ / F1 @) fuy) de dy + / fo(@) foly) da dy
A Ac

//132 max{ f1(z) f1(y), fo(x) f2(y)} dz dy

//IH— fi(z)fi(y) da:dy+//]H+ fo(2) f2(y) da dy

1+X 14X
A AR
2 " A

IN
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where the second equality follows by the definition of f and the third equality is an easy
computation.
Hence

min{(4), 13(4)} < T2 O
It should be noted here that the critical distributions for the case n = k = 2 are symmetric,
whereas in the single-observation case they were skewed (cf. Example 5.2). In fact, for the
distribution from Example 5.4 the advantage of having a second observation is completely absent,
as follows by Example 5.4 and Theorem 2.6 of Hill and Tong [6].
Another consequence is, that the bound in (6) may fail in general when p is replaced by A,
since (1 +X)/2< {1+ (1—X)} tforall A <1.

For measures with atoms, there is a similar result as in the single-observation case.
Corollary 5.5 Let p be a general probability measure with tail d-concentration p. If u(E) < «

for every atom E of u, then

n—1

k(D) > (1= p)M]

=0

n—1 .
— = —ak.
n

Proof: Follows easily from Theorem 5.1, Theorem 4.4 and the fact that if all atoms of u have
mass at most «, then the atoms of ¥ have mass at most o¥. O

Remark 5.6 Let ¢, x(p) denote the right hand side in (6), ¢, x(p) = [Z?;[)l(l — p)ki]~L. The
bound ¢, ; has the following easily verified properties:

(i) cnk(p) L as n — oo, and lim,, o cpi(p) = 1 — (1 — p)*.
(i) cnr(p) T as k — oo, and limg_yo cp i (p) = 1.
(iii) If £ > loga/log(l — p), then ¢, x(p) > 1 — a for all n € IN.

Example 5.7 Let F' be the exponential distribution with mean 1, so F(z) =1—e~% (z > 0).
Then p(F,d) = 1—e %, so if d = § (for example), then (iii) above implies that 6 observations
suffice for the minimax risk to be less than 5%, regardless of n.
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