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Abstract

Lévy’s dragon curve [P. Lévy, Les courbes planes ou gauches et les
surfaces composées de parties semblables au tout, J. Ecole Polytechn.,
227-247, 249-291 (1938)] is a well-known self-similar planar curve with
non-empty interior. We derive an arithmetic expression for the coordi-
nate functions of Lévy’s dragon curve, and show that the 3

2
-dimensional

Hausdorff measure of the graph of each coordinate function is strictly pos-
itive and finite. This complements known dimensional results concerning
the coordinate functions of space-filling curves of Peano and Hilbert. The
proof is based on deriving suitable uniform upper bounds for the sizes of
the graphs’ level sets.

1 Introduction

Lévy’s dragon curve D (Figure 1) was introduced and studied in 1938 by P.
Lévy [13]. It is the unique compact set in the complex plane satisfying the set
equation

D = ψ1(D) ∪ ψ2(D), (1)

where ψ1 and ψ2 are similar contractions given by ψ1(z) = (1
2 + 1

2 i)z, and
ψ2(z) = (1

2 − 1
2 i)z + (1

2 + 1
2 i). Figure 2 shows how D can be constructed from

the isosceles triangle A0 with vertices 0, 1, and 1
2 + 1

2 i. It is easy to see from this
recursive construction that the area of D is the same as that of A0. In fact, it is
known that D has non-empty interior, and can be used to tile the complex plane.
Other known results on Lévy’s dragon curve concern the Hausdorff dimension
of its boundary [3], and a classification of the regions “inside” Lévy’s dragon
(the connected components of Dc) [1]. An English translation of Lévy’s original
paper is included in Edgar’s book [4].
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Figure 1: Lévy’s dragon curve
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Figure 2: The first five steps of the construction of Lévy’s dragon curve

Equation (1) yields the natural parametrization {L(t) : 0 ≤ t ≤ 1} of D,
where L(t) is the unique continuous solution of the functional equation

L(t) =

{
(1
2 + 1

2 i)L(2t), 0 ≤ t ≤ 1
2 ,

(1
2 − 1

2 i)L(2t− 1) + (1
2 + 1

2 i),
1
2 ≤ t ≤ 1.

(2)

Write L(t) = x(t)+ iy(t). We will be interested in the coordinate functions x(t)
and y(t).

The functional equation (2) belongs to a class of functional equations studied
by G. de Rham in 1957 [2], namely

Gα(t) =

{
αGα(2t), 0 ≤ t ≤ 1

2 ,

(1 − α)Gα(2t− 1) + α, 1
2 ≤ t ≤ 1,

(3)
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where α is a complex parameter satisfying |α| < 1, |1−α| < 1. (See also page 288
of [5]. The functional equation is stated here in parametrized form to facilitate
comparison with (2).)

De Rham showed that (3) has a unique continuous solution Gα, and that the
real and imaginary parts of Gα(t) are nowhere differentiable when min{|α|, |1−
α|} > 1/2. Since in the case of L(t) we have α = 1

2 + 1
2 i, it follows that x(t)

and y(t) are nowhere-differentiable.
Next, since D is self-similar, we expect x(t) and y(t) to be self-affine in some

sense. It is of particular interest to ask for the Hausdorff dimension of their
graphs, which we denote by X and Y , respectively. While there is a wealth
of literature on the Hausdorff dimensions of self-affine sets, it seems that none
of the general results is directly (and easily) applicable to this specific case.
Instead, we give an argument “from the ground up”, using little more than
the definition of Hausdorff measure and by showing that the level sets of the
graphs do not become “too large”, to prove that X and Y have positive and
finite 3

2 -dimensional Hausdorff measure. This complements known results for
the coordinate functions of space-filling curves of Peano [12] and Hilbert [15].

The key to viewing the coordinate functions is to iterate the functional equa-
tion (2), obtaining

(
x

(
k + t

4

)
, y

(
k + t

4

))
=




(0, 0) +
(

−y(t)
2 , x(t)

2

)
, if k = 0,

(0, 1
2 ) +

(
x(t)
2 , y(t)

2

)
, if k = 1,

(1
2 ,

1
2 ) +

(
x(t)
2 , y(t)

2

)
, if k = 2,

(1, 1
2 ) +

(
y(t)
2 , −x(t)

2

)
, if k = 3,

(4)

for 0 ≤ t ≤ 1. The boundary conditions are x(0) = 0, x(1) = 1 and y(0) =
y(1) = 0. This functional equation closely resembles the functional equation
for the coordinate functions of Hilbert’s space filling curve (see [15]). The only
difference is, that the signs of y(t) in the cases k = 0 and k = 3 are inverted.
However, this difference makes the study of level sets, which were used suc-
cessfully by McClure [15] to obtain the dimension 3

2 for Hilbert’s coordinate
functions, much more delicate in our case.

From (4), we see that X and Y each consist of two affine contracted images
of X and two of Y . (See Figure 3). Thus, the functions x(t) and y(t) are self-
affine in the sense of Kamae [10], but not in the sense of Kono [12]. Moreover,
since the contraction ratio in the vertical direction (1/2) is different from that
in the horizontal direction (1/4), standard dimension theorems of Hutchinson
[9] and Mauldin and Williams [14] do not apply here.

When the affine images of X and Y are mixed together as in Figure 3, it is
usually more difficult to obtain the Hausdorff dimensions of X and Y . Kenyon
and Peres [11] and Takahashi [17] give general formulas for the dimensions of
self-affine sets determined by multiple patterns. However, these formulas require
the affine contracted images of the patterns to be aligned in horizontal strips.
While the graphs of Hilbert’s coordinate functions satisfy this property (see
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Figure 3: The structure ofX and Y . Prime symbols (′) indicate a top-to-bottom
reflection of the affine image.

[15]), it clearly fails for the graphs of Lévy’s coordinate functions. Precisely,
the projections of the affine images of X and Y onto the vertical axis partially
overlap each other. While Kenyon and Peres [11] indicate a general method to
reduce this “overlap” case to the aligned case, the calculations involved can be
quite overwhelming, and even if the correct dimension is obtained, there is no
guarantee that X and Y will have positive and finite Hausdorff measure with
respect to this dimension. In many individual cases it is more practical to look
for a direct argument (often involving level sets), such as that used by Edgar
[5] for Kiesswetter’s fractal. This is the approach taken in the present article.

The details concerning the Hausdorff dimension of X and Y are given in
section 3. But first, in section 2, we adapt Sagan’s method in [16] to give
arithmetic expressions for x(t) and y(t) in terms of the quaternary expansion of
t. While not needed to obtain the Hausdorff dimension, these expressions are
included here since they are useful for producing graphs of x(t) and y(t), and
they do not seem to have appeared in print before.

2 Arithmetization of Lévy’s coordinate functions

Since the curve L(t) is defined by two complex contractions, it seems natural to
give a representation of L(t) using the binary expansion of t. Indeed, such an
expression was given by Lévy in his 1938 paper. A disadvantage of this approach
is that it is not clear how to distill elementary expressions for the coordinates
from this complex representation.

To overcome this problem, we consider the second iterates of the mappings ψ1

and ψ2 defined in the introduction: let L0 = ψ1 ◦ψ1, L1 = ψ1 ◦ψ2, L2 = ψ2 ◦ψ1,
and L3 = ψ2◦ψ2. Each Lq maps the closed rectangle G with vertices −1/2−i/4,
−1/2 + i, 3/2 − i/4 and 3/2 + i into itself.
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We now follow Sagan’s method in [16]. For 0 ≤ t ≤ 1, let

t = 0.q1q2q3 . . .

denote the quaternary expansion of t. (In case t has two different quaternary
expansions, either representation may be chosen.) Then for each n,

L(t) ∈ Lq1 ◦ Lq2 ◦ · · · ◦ Lqn(G),

and since the images of G under Lq1 ◦Lq2 ◦ · · ·◦Lqn shrink to a point as n→ ∞,

{L(t)} = lim
n→∞Lq1 ◦ Lq2 ◦ · · · ◦ Lqn(G)

(where the convergence is with respect to the Hausdorff distance between sets).
Clearly, we may replace G in the above limit with the single point 0 ∈ G, and
write

L(t) = lim
n→∞Lq1 ◦ Lq2 ◦ · · · ◦ Lqn(0). (5)

Now the transformations Lq may be written in the form

Lqz =
1
2
Lqz +

1
2
lq, q = 0, 1, 2, 3, (6)

where L0z = zi, L1z = L2z = z, L3z = −zi, l0 = 0, and lq = q − 1 + i for
q = 1, 2, 3. By successive substitution of (6) into (5), we obtain that

Lq1 ◦ Lq2 ◦ · · · ◦ Lqn(0) =
n∑

j=1

(
1
2j

)
Lq1Lq2 . . . Lqj−1 lqj , (7)

where Lq1Lq2 . . . Lqj−1 is interpreted as the identity if j = 1. Now let n0,j

and n3,j denote respectively the number of 0’s and the number of 3’s among
q1, . . . , qj−1, and define

dj := n0,j − n3,j (mod 4).

Observe that
Lq1Lq2 . . . Lqj−1 = L

dj

0 ,

and so,

L(t) = lim
n→∞

n∑
j=1

(
1
2j

)
L

dj

0 lqj =
∞∑

j=1

(
1
2j

)
idj lqj . (8)

Writing lqj = sgn(qj)(qj −1+i), and considering each of the four possible values
of dj separately, we obtain the following expressions for the real and imaginary
parts of L(t):

(
x(t)
y(t)

)
=

∞∑
j=1

(
1
2j

)(
(−1)�dj/2�

(−1)�dj/2�

)
sgn(qj)

(
(1 − dj mod 2)qj − 1

1 − (dj mod 2)qj

)
, (9)
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where �x� and 	x
 denote the largest integer less than or equal to x and the
smallest integer greater than or equal to x, respectively. Notice how this ex-
pression utilizes both the quotient and the remainder of dj divided by 2.

It remains to be checked that for points t with a terminating quaternary
expansion, the expression (8) does not depend on the representation chosen:

t = 0.q1 . . . qn−1q, or t = 0.q1 . . . qn−1(q − 1)3̄.

Let d′n+1 = dn + 1{q=1}. Then

L(0.q1 . . . qn−1q) =
n−1∑
j=1

(
1
2j

)
idj lqj +

(
1
2n

)
idn lq,

and

L(0.q1 . . . qn−1(q − 1)3̄) =
n−1∑
j=1

(
1
2j

)
idj lqj +

(
1
2n

)
idn lq−1

+
(

1
2n+1

)
id

′
n+1

[
1 − i

2
+
(
i

2

)2

−
(
i

2

)3

+ . . .

]
(i+ 2).

Noting that [
1 − i

2
+
(
i

2

)2

−
(
i

2

)3

+ . . .

]
(i+ 2) = 2,

we obtain that

L(0.q1 . . . qn−1(q − 1)3̄)−L(0.q1 . . . qn−1q)

=
(

1
2n

)[
idn(lq−1 − lq) + id

′
n+1

]

=
(

1
2n

)
idn
[
lq−1 − lq + 1 + (i− 1)1{q=1}

]
= 0,

where the last equality follows by recalling that l0 = 0, and lq = q − 1 + i for
q ≥ 1.

Expression (9) allows us to plot accurate approximations of the graphs of
x(t) and y(t), as shown in Figure 4. Note that the graphs are scaled differently.
These graphs may be compared to the symbolic representations in Figure 3.

3 The Hausdorff dimension of the coordinate

functions

We first recall the definition of Hausdorff measure and Hausdorff dimension
below. For a set F in Euclidean space, let |F | denote the diameter of F . Let
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Figure 4: Graphs of x(t), left, and y(t), right.

s ≥ 0. For F ∈ Rn and δ > 0, define

Hs
δ(F ) := inf

{∑
i∈I

|Ui|s : F ⊆
⋃
i∈I

Ui and |Ui| < δ for every i ∈ I

}
,

where I denotes a countable index set. The s-dimensional Hausdorff measure
of F is defined by

Hs(F ) := lim
δ→0+

Hs
δ(F ),

and the Hausdorff dimension of F is defined by

dimF := sup{s ≥ 0 : Hs(F ) = ∞} = inf{s ≥ 0 : Hs(F ) = 0}.

For a broader introduction to Hausdorff dimension, see Falconer [6].

Recall that X is the graph of x(t), and Y is the graph of y(t). More precisely,
X := {(t, x(t)) : 0 ≤ t ≤ 1} and Y := {(t, y(t)) : 0 ≤ t ≤ 1}. Our purpose is to
prove the following theorem.

Theorem 3.1 (i) dimX = dimY = 3
2 ; and (ii) 0 < H3/2(X) = H3/2(Y ) <∞.

The proof will follow from the observations and lemmas below. Note first
that, using (4) and the continuity of x(t) and y(t), it is straightforward to show
that

x(t) = 1 − x(1 − t), and y(t) = y(1 − t), 0 ≤ t ≤ 1. (10)

Let Z denote the left half of X . That is, Z := {(t, x(t)) : 0 ≤ t ≤ 1/2}.
In view of the above symmetries, X consists of two congruent copies of Z (the
second being rotated 180◦). Similarly, Y consists of two congruent copies of Z
(the first one rotated 180◦, and the second reflected top-to-bottom). This can be
seen from (4), which shows that the left half of Y consists of an affine-contracted
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copy of X followed by an affine-contracted copy of Y itself (each reduced hor-
izontally by a factor 4 and vertically by a factor 2). By the symmetries (10),
this combination is congruent to Z.

It follows from the above reasoning that Z consists of four affine-contracted
copies of itself, and that dimX = dimY = dimZ. Thus, we have reduced the
sets of interest (X and Y ) to essentially one single self-affine set (Z).

It is slightly more convenient to consider the set Ẑ := 2Z := {(2t, 2z) :
(t, z) ∈ Z}. From the above facts, Ẑ is the unique nonempty compact set
satisfying the set equation

Ẑ =
4⋃

i=1

Ti(Ẑ),

where

T1

(
t

z

)
=
[−1/4 0

0 1/2

] [
t
z

]
+
[

1/4
−1/2

]
,

T2

(
t

z

)
=
[
1/4 0
0 1/2

] [
t
z

]
+
[

1/4
−1/2

]
,

T3

(
t

z

)
=
[
1/4 0
0 1/2

] [
t
z

]
+
[
1/2
0

]
,

T4

(
t

z

)
=
[−1/4 0

0 −1/2

] [
t
z

]
+
[
1
1

]
.

(See Figure 5.) A formula of Falconer [7] can be applied to these contractions
to show that dim Ẑ = 3/2 is “almost certainly” true in a measure theoretic
sense, and that 3/2 is certainly an upper bound. Moreover, another result by
Falconer [8, Corollary 5] implies that the box-counting dimension of Ẑ is 3/2.
However, we still need to prove that dim Ẑ = 3/2 is “certainly” true.

−1

3
2

�

0 1




� �
�

	

Figure 5: The self-affine structure of Ẑ

By considering the heights of the triangles in Figure 2, it is easily verified
that the ranges of x(t) and y(t) are [− 1

2 ,
3
2 ] and [− 1

4 , 1], respectively. Thus, the
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smallest rectangle with sides parallel to the coordinate axes that contains Ẑ is
the rectangle R := [0, 1]× [−1, 3

2 ]. Now for n ∈ N, define the stage-n rectangles
Ri1,...,in by

Ri1,...,in = Ti1 · · ·Tin(R), 1 ≤ i1, . . . , in ≤ 4.

Figure 5 shows the stage-1 rectangles with their orientations. Note that for all
n,

Ẑ ⊆
⋃

i1,...,in

Ri1,...,in . (11)

Lemma 3.2 H3/2(Ẑ) <∞.

Proof. Each stage-n rectangle has width (1/4)n and height (5/2)(1/2)n, and
can therefore be partitioned into 5 · 2n−1 squares of side (1/4)n. Since there are
4n rectangles total at stage n, it follows from (11) that

H3/2

4−n
√

2
(Ẑ) ≤ 4n · 5 · 2n−1(4−n

√
2)3/2 = 5 · 2−1/4,

and the lemma follows upon letting n→ ∞. �

The next lemma says roughly that the horizontal cross sections of Ẑ do
not become too large. It uses the following notation. For z ∈ [−1, 3

2 ] and
k = 0, 1, 2, . . . , let

Nk(z) = the number of stage-k rectangles intersected by
the line segment [0, 1]× {z}.

Define Nk(z) = 0 if z �∈ [−1, 3
2 ]. Observe that for fixed k, Nk(z) is constant on

each interval (j/2k+1, (j + 1)/2k+1), for j ∈ Z.

Lemma 3.3 For each z ∈ [−1, 3
2 ] and k ∈ N,

Nk(z) ≤ 6 · 2k.

Proof. From the affine transformations that define Ẑ, we can derive the recur-
sive relation

Nk(z) = 2Nk−1(2z + 1) +Nk−1(2z) +Nk−1(2 − 2z), −1 ≤ z ≤ 3
2 , k ∈ N.

(12)
Define the mappings f0(z) = 2z + 1, f1(z) = 2z, and f2(z) = 2 − 2z. Let
Ik := {0, 1, 2}k. For a sequence i = (i1, . . . , ik) in Ik, define |i| := k, and let fi
denote the composition

fi := fik
◦ fik−1 ◦ · · · ◦ fi1 .

Let Fk := {fi, i ∈ Ik}. Note that each f ∈ Fk is of the form f(z) = 2kz + j or
f(z) = −2kz + j, where j ∈ Z.
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For f ∈ Fk, let P(f) denote the set of predecessors of f . That is, P(f) is
the set of all functions f̂ in Fk−1 such that f = fi ◦ f̂ for some i ∈ {0, 1, 2}.

Now for each z ∈ [−1, 3
2 ], repeated iteration of (12) yields the representation

Nk(z) =
∑

f∈Fk

cf (z)N0(f(z)). (13)

Here the coefficients cf (z) are given by

cf (z) =
∑

i:fi=f

2n(i),

where n(i) =card{r : 1 ≤ r ≤ |i|, ir = 0}, the number of zeros in i.
Now observe that N0(f(z)) = 1 if f(z) ∈ [−1, 3

2 ], and = 0 otherwise. Since
the greatest possible length of an arithmetic progression with spacing 1 that fits
inside the interval [−1, 3

2 ] is 3, it follows that at most 6 terms in the represen-
tation (13) are nonzero (three for each possible orientation of f(z)). Thus, the
lemma will follow once we establish that

cf (z) ≤ 2k, for all f ∈ Fk. (14)

This will be done by induction on k. For k = 1, the statement is obvious.
Suppose (14) holds for k = m. Fix f ∈ Fm+1, say f(z) = ±2m+1z + j. If
j is even, then every i ∈ Im+1 with fi = f must have im+1 ∈ {1, 2}. Thus,
card(P(f)) ≤ 2, and by the induction hypothesis,

cf (z) =
∑

f̂∈P(f)

cf̂ (z) ≤ 2 · 2m = 2m+1.

If j is odd, then each i ∈ Im+1 with fi = f must have im+1 = 0, and f has
a unique predecessor f̂ ∈ Fm. The induction hypothesis gives

cf (z) = 2cf̂ (z) ≤ 2m+1.

Thus, (14) holds for all k ∈ N, and the lemma follows. �

Lemma 3.4 H3/2(Ẑ) > 0.

Proof. Let λ denote Lebesgue measure on [0, 1]. We define a measure µ on the
Borel sets of [0, 1] × R by

µ(U) := λ({t : U ∩ Ẑ ∩ ({t} × R) �= ∅}).

Thus, µ is a probability measure concentrated on Ẑ, whose projection onto the
horizontal axis is λ. We will show that there exists a positive constant C such
that for every square U with sufficiently small diameter,

µ(U) ≤ C|U |3/2.
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It will then follow that for every countable cover {Ui} of Ẑ consisting of sets
with sufficiently small diameter,

1 ≤ µ

(⋃
i

Ui

)
≤ C

∑
i

|Ui|3/2,

so
∑

i |Ui|3/2 ≥ C−1, and hence H3/2(Ẑ) ≥ C−1 > 0.
Fix a square U with sides parallel to the coordinate axes, say U = [t0, t0 +

s]× [z0, z0 +s]. Let n be the unique integer such that 4−n ≤ s < 4−(n−1). Thus,
[t0, t0 + s] intersects at most 4 of the intervals [i/4n, (i+ 1)/4n].

Similarly, we may assume s is small enough (and n is large enough) so that
the interval [z0, z0 + s] intersects at most two of the intervals [j/2n+1, (j +
1)/2n+1], with j ∈ Z. This will certainly be the case if s < 2−(n+1), and
sufficient for this is 4−(n−1) ≤ 2−(n+1), which holds for n ≥ 3. In the same way,
[z0, z0 + s] intersects at most two of the intervals [j/2n+r+1, (j + 1)/2n+r+1] for
r = 1, 2, . . . , n− 3.

Now fix one of the intervals [i/4n, (i + 1)/4n] that intersect [t0, t0 + s], and
denote the chosen interval by I. Let V := U ∩ (I × R). Since the intersection
of the vertical strip I ×R with Ẑ is an affine-contracted copy of Ẑ, the number
of stage-(n+ r) rectangles intersected by the line segment I × {z} is constant
in z on each interval (j/2n+r+1, (j + 1)/2n+r+1), and by Lemma 3.3, is at most
6 · 2r. Thus, by the last statement in the previous paragraph, the number of
stage-(n+r) rectangles that intersect V is at most 12 ·2r, for r = 1, 2, . . . , n−3.
Since each such rectangle has width 4−(n+r), it follows that

µ(V ) ≤ 12 · 2r · 4−(n+r) = 12 · 2−(2n+r), r = 1, 2, . . . , n− 3,

and thus,
µ(V ) ≤ 12 · 2−(3n−3).

Repeating the above argument for each of the (at most 4) intervals [i/4n, (i +
1)/4n] that intersect [t0, t0 + s], we obtain that

µ(U) ≤ 4 · 12 · 2−(3n−3) = 3 · 27 · 2−3/4(4−n
√

2)3/2

≤ 3 · 27 · 2−3/4|U |3/2,

as desired. �

Note that the proofs of Lemmas 3.2 and 3.4 yield the estimates

.00219 ≈ (3 · 27 · 2−3/4)−1 ≤ H3/2(Ẑ) ≤ 5 · 2−1/4 ≈ 4.204.

While these bounds can be improved, it seems difficult to determine the exact
value of H3/2(Ẑ).

Proof of Theorem 3.1. Immediate from Lemmas 3.2 and 3.4, and the rela-
tionship between X , Y , and Ẑ. �
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