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Abstract

The graphs of coordinate functions of space-filling curves such as
those described by Peano, Hilbert, Pélya and others, are typical exam-
ples of self-affine sets, and their Hausdorff dimensions have been the
subject of several articles in the mathematical literature. In the first
half of this paper, we describe how the study of dimensions of self-affine
sets was motivated, at least in part, by these coordinate functions and
their natural generalizations, and review the relevant literature. In
the second part, we present new results on the coordinate functions of
Pélya’s one-parameter family of space-filling curves. We give a lower
bound for the Hausdorff dimension of their graphs which is fairly close
to the box-counting dimension. Our techniques are largely probabilis-
tic. The fact that the exact dimension remains elusive seems to indicate

the need for further work in the area of self-affine sets.
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1 Introduction

Until the late nineteenth century, mathematicians used the word ‘dimension’
in only a vague sense: we understand intuitively sets such as a line, a square
and a cube, and have no hesitation to say that their dimensions are one, two
and three respectively.

However, Peano’s demonstration in 1890 [21] of a continuous map from
the unit interval onto the unit square (now called Peano’s space-filling curve)
showed convincingly that this intuitive notion of dimension could not be
satisfactory mathematically. Since the continuous image of a line segment
could fill a square, it was no longer clear how to classify sets in the plane by
their dimension. In particular, the old belief that the dimension of a space
could be defined as the least number of continuous real parameters needed
to describe the space became instantly obsolete.

In the following decades, further examples of space-filling curves were
given by Hilbert [6], Lebesgue [16], Sierpiniski [25], Pélya [22], and others.
The resulting crisis led Urysohn, Menger and others in the 1920s to develop
a rigorous definition of topological dimension. Furthermore, several other
dimensions were introduced to measure general sets, including Hausdorff
dimension and box-counting dimension. See Hurewicz and Wallman [7] for
an account of dimension theory.

Almost a century after Peano’s discovery, space-filling curves enjoyed a
period of renewed interest, and again dimension played a central role. The
triggering event was Mandelbrot’s extensive work on fractals (e.g. [17]), and
the subsequent development of a theory of self-similar and self-affine sets and
self-affine functions. Coordinate functions of space-filling curves turned out
to be prime examples of self-affine functions, and hence became models for
more general classes of self-affine functions and self-affine sets. Computing
the (usually fractional) dimensions of such sets became a central goal.

This paper reviews the development of the theory of self-affine sets from

the point of view of their relationship to the coordinate functions of space-



filling curves. The emphasis will be on the calculation of Hausdorff and box-
counting dimensions. The second part of the paper presents new results on
the dimensions of the graphs of the coordinate functions of Pélya’s space-
filling curve. These graphs, which do not fall in any of the general classes
of self-affine sets described in the first half of the paper, make it clear that
much work remains to be done in the study of self-affine sets.

The organization of this paper is as follows. Section 2 recalls the defi-
nitions of Hausdorff and box-counting dimensions. Section 3 describes Mc-
Mullen’s results on generalized Sierpinski carpets, considered the most fun-
damental work on self-affine sets. In section 4 we discuss the space-filling
curves of Peano, Hilbert, and Lebesgue. We show that each of these inspired,
perhaps indirectly or subconsciously, the creation of a general class of self-
affine functions, which in turn gave rise to an appropriate generalization of
McMullen’s dimension formulas. In section 5, we consider the coordinate
functions of Pélya’s one-parameter family of space-filling curves, which map
an interval onto a right triangle. We obtain the box-counting dimension as
a function of the parameter, and give a fairly sharp lower bound function for
the Hausdorff dimension. Unfortunately — except for the relatively easy case
when the triangle is isosceles — the exact Hausdorff dimension remains elu-
sive, and some radically new idea appears to be needed to analyze self-affine
functions of the complexity of Pélya’s coordinate functions.

This paper is not intended as a first introduction to space-filling curves;
nor does it cover all the known space-filling curves. For an excellent general

treatise on the subject, we refer to Sagan [24].

2 Hausdorff and box-counting dimensions

We briefly recall the definitions of Hausdorff and box-counting dimensions.
For a broader introduction, however, see Falconer [4].

For a set F' in R", let |F| denote the diameter of F. Let s > 0. For



F CR" and § > 0, define

Hi(F) = inf{z \Ui|> : F C UUi and |U;| < § for every i € I} ,
icl iel

where [ is understood to be countable. The s-dimensional Hausdorff mea-

sure of F' is defined by
H(F) := lim H3(F),
0—0
and the Hausdorff dimension of F' is the number
dimg F :=sup{s > 0: H*(F) = oo} = inf{s > 0: H*(F) = 0}.

Another common dimension to measure a fractal set F' is its boz-counting

dimension, defined by

. .. logN(9)
dimp I:= lim 30 [/6) (1)

where N () is the minimum number of d-balls needed to cover F'. If the limit
does not exist, one considers upper and lower box-counting dimensions, de-
noted dimpF and dimpF', and defined by taking lim sup and lim inf, respec-

tively in (1). It is well known that dimy F' < dimgF for any set F' C R"™.

3 McMullen carpets

A self-affine set in R? is a nonempty compact set E which satisfies a set

equation of the form

E=y1(B)U-- Uyn(E), (2)

where 11,..., 1, are affine contractions of R?. If the 1); are similarities,
E is said to be self-similar. Hutchinson [8] proved that (2) has a unique
nonempty solution, and established a formula for dimg F in case E is self-
similar and satisfies the so-called open set condition.

In 1984, McMullen [19] generalized Hutchinson’s result to a family of

self-affine sets constructed as follows. Let S be the unit square, and choose



integers 1 < m < n. Draw n — 1 vertical lines and m — 1 horizontal lines
to partition S into mn congruent rectangles, arranged in m ‘rows’ and n
‘columns’. For: =0,...,m—1and j =0,...,n—1, let ¢; ; be the orientation
preserving affine contraction which maps S onto the rectangle in row 7 and

column j. Thus,

w(l) =" ) 6+

Let R be a nonempty subset of {0,...,m —1} x{0,...,n —1}. Then there

exists a unique nonempty compact set M C S satisfying the set equation
M= |J dij).
(i.j)ER
Following Kenyon and Peres [11], we shall call M a McMullen carpet. Note

that M can be approximated iteratively by putting My = S, and for k£ > 0,
Mpi1 = Ui j)er ¥ij(Mk). An example is shown in Figure 1.

M, M M,

Figure 1: An example of a McMullen carpet with m = 2,n = 3.

McMullen’s main result is that
m—1
dimg M = log,, (Z t?gnm> , (4)
i=0
where t; = #{(p,q) € R : p = i}, the number of rectangles contained

in row ¢ of the generating pattern. McMullen also gave a formula for the



box-counting dimension, and showed that dimy M = dimp M if and only
if each nonempty row in the generating pattern contains the same number
of rectangles; that is, if there exists a constant ! such that ¢; € {0,(} for
1=0,...,m—1.

For example, the set determined by the pattern in Figure 1 has Hausdorff
and box-counting dimension 1 + logz 2. McMullen’s work was extended in
various directions by Falconer [3, 5], Lalley and Gatzouras [14], Kenyon and

Peres [11] and Takahashi [26].

4 Peano’s, Hilbert’s and Lebesgue’s curves

In this section, we review three famous space-filling curves and give the
Hausdorff dimension of the graphs of their coordinate functions. Let I =
[0,1] denote the closed unit interval, and S = [0, 1] x [0, 1] the closed unit

square.

4.1 Peano’s coordinate functions

In 1890, Peano [21] constructed the first continuous mapping from the unit
interval onto a square, which is now called Peano’s space-filling curve. Ten
years later, Moore [20] proved that the Peano curve is nowhere differentiable.

Divide S into nine congruent subsquares, and let ¢; ( =0,1,...,8) be
the similar contractions which map S onto each subsquare in the order and

with the orientations shown in Figure 2.

21 3] 8
— = | 1|4|7
0] 5] 6

Figure 2: Construction of the Peano curve.



For t € I, let t = (0.t1t9t3 ... )9 denote the nonary expansion of ¢. Since

the ¢; are contractions and .S is compact, the intersection
o0
(Y b oo, (S)
n=1

consists of a single point, which we denote by P(t). Brief reflection shows
that each point of S can be obtained in this manner; hence the mapping P
is surjective.
Note that some points ¢ have two different nonary expansions. It is not
difficult to convince oneself that both expansions yield the same point in S.
Let z(t) and y(t) denote the coordinate functions of P(t), and denote
their graphs by X and Y, respectively. It is known that z(¢) and y(t) are

continuous but nowhere differentiable and satisfy the functional equations

xc%i>_$(%>: o) if § =0,2,3,5,6,8,
—zl) if j =1,4,7,
and
yG%i>_y<g>: u), ifj=0,1,2,6,7,8,
—ut), if j = 3,4,5,

for 0 <t <1, with boundary values z(0) = y(0) = 0, and z(1) = y(1) = 1.

XXX Y|Y Y]

Figure 3: The structure of the graphs of Peano’s coordinate functions. A bar indicates

a top-to-bottom reflection.

See Figure 3. The graph of each coordinate function is a self-affine set

constructed by affine maps from the unit square to rectangles of width 1/9



and height 1/3. However, since some of the affine maps involve vertical
reflections, the sets X and Y are not quite McMullen carpets. Thus, Mc-

Mullen’s formula does not apply, or so it seems.

In 1986 Kono [12], presumably inspired by Peano’s space-filling curve,
introduced the following class of self-affine functions. Kono called a func-
tion f : [0,1] — R self-affine if there exist positive integers m,n > 1 and
constants ¢; € {—1,1} (j =0,...,n — 1) such that

() -0)-o82
n n m
for0<t<land j=0,1,...,n—1.

Peano’s coordinate functions clearly satisfy the above functional form.
Kono studied the Hausdorff dimension of the graphs of self-affine functions
under certain restrictions, proving in particular that the graphs of Peano’s
coordinate functions have Hausdorff dimension 3/2. Later, Urbanski [27]
gave a general formula for the Hausdorff dimension of the graph of any
continuous self-affine function in the sense of Kono with f(0) =0, f(1) = 1.
It is quite similar to McMullen’s formula.

Note that, compared to McMullen’s carpets, the graphs of self-affine

functions in the sense of Kono are generated by affine mappings of the form

)= ) G () om0

4.2 Hilbert’s coordinate functions

Although it was Peano who discovered the first space-filling curve, Hilbert
[6] was the first to outline a general geometrical procedure that allowed the
construction of an entire class of space-filling curves. The simplest example
is sketched below.

Divide the unit square S into four congruent subsquares, and let hg, by, ho
and hg be the similar contractions which map S onto each subsquare in the

order and with the orientations shown in Figure 4.



Figure 4: Construction of Hilbert’s curve.

For t € I, let t = (0.t1t2t3...)s denote the quaternary expansion of ¢.

As before, the intersection
o0
() s 0+ 0 by, (S)
n=1

consists of a single point, which we denote by H(t). As with Peano’s curve,
the image H(t) is independent of the choice of quaternary expansion for ¢
when ¢ has two quaternary expansions.

Denote the coordinate functions of H(t) by x(t) and y(t). They are

continuous but nowhere differentiable, and satisfy the following functional

equations:
)
us), if j =0,
. . z(t) e
t+j i R ifj =1,
o) if j =2,
0 e
2 if j =3,
and )
) if j =0,
t+j j % ifj=1,
y\l— ) ~v\3 = 9 , (6)
208 if j =2,
—z) if j =3,

z(1) = 1.



Let X denote the graph of z(¢) and Y the graph of y(¢). By (5) and (6),
X and Y each consist of two affine contracted images of X, and two of Y,
as shown in Figure 5. Thus, X and Y are not among the sets studied by

McMullen or Kono.

Figure 5: The structure of the graphs of Hilbert’s coordinate functions. A bar indicates

a top-to-bottom reflection.

However, Kono [13] pointed out that Hilbert’s coordinate functions are
self-affine in the sense of Kamae. A function f : [0,1] — R is self-affine in

the sense of Kamae [9] if the following conditions are satisfied:

1. There is a finite number of continuous functions f1, f2,..., fx : [0,1] —

R with f;(0) =0 foralll = 1,2,..., N, and f; = f.

2. There exist positive integers m,n > 1, and for each [ € {1,2,...,N}
and each j € {0,1,...,n — 1}, there exists k € {1,2,..., N} such that
t+ 7 ] t
fz( “) ~ fi <1> TS
n

n m

Motivated by Kamae’s work, Kenyon and Peres [11] and Takahashi [26]
introduced a class of generalized self-affine sets with N patterns which in-
cludes the graphs of Kamae’s functions under some restrictions. Both papers
give a formula to calculate the Hausdorff dimension of these sets, but for
ease of presentation we follow Takahashi [26)].

Let 1 < m < n be integers, and divide the unit square into m rows

and n columns as in Section 3. Let 1;; be the affine maps of (3). For

10



[ =1,2,....,N, let g be a map from {0,...,m — 1} x {0,...,n — 1} to
0,1,...,N}.
Next, let Xo = 0, and let {X;, X5,..., Xy} be a family of non-empty

compact sets which satisfies
Xl:U¢i,j(Xgl(i,j)), I=1,...,N.
i’j

Put X := Xj, and assume that {Xy, Xo,..., Xy} is irreducible: for each
pair of indices ([,1'), X; contains an affine contracted image of X;. For

integers 0 < yp,...,yx < m, write yj ... yx = Zle y;mF~% and define

q g+1 Yi---Yk Yr--ypt+1
N(yp... = | =, — ) X nx .
That is, N(y1 ... yg) is the number of affine contracted images of Xi,..., Xy

contained in the ‘row’ [0, 1] x [#=k ?“Ty,’j“] of X. Then

1
dimgy X = lim —
k—oo k

log,,, [ > N(yl---yk)log”m] - (7)

Y1---Yk

(A formula for the box-counting dimension of X is known as well: see Kenyon
and Peres [11].)

The graphs of Hilbert’s coordinate functions are an example of the above
set-up: take n =4, m =2, X1 = X, Xo =Y, X3 = X, and X; = Y.
Figure 5 shows that the system is irreducible, and (7) yields that these
graphs have Hausdorff dimension 3/2. This was shown independently by
McClure [18] using a different method. In fact, McClure obtained the
stronger result that the H3/2-measure of X and Y is strictly positive and
finite.

In general, calculating the limit in (7) can be difficult. Kenyon and
Peres [11] explain how spectral theory can sometimes be used to do this.
Moreover, they point out how (7) reduces to Urbanski’s formula in the case

of graphs of Kono’s self-affine functions.
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4.3 Lebesgue’s space-filling curve

So far, the coordinate functions we have encountered all had Hausdorff di-
mension 3/2. A natural question is: Which numbers can be the Hausdorff
dimensions of coordinate functions of a space-filling curve? To answer this
question, we start with a very different type of space-filling curve, proposed
in 1904 by Lebesgue [16] and based on the middle-third Cantor set C. For
a point ¢t € C, express ¢ by its ternary expansion: ¢ = (0.t1tat3. .. )3, where

t; € {0,2}, i € N. Define

z(t) = %i (%)jt%_l, y(t) = %il (%)jt%. (8)

j=1 Jj=

Then it is almost obvious that the function L(¢) = (z(t),y(t)) maps C
onto the unit square S. To extend L to all of I, Lebesgue used linear
interpolations in the intervals that were removed in the construction of C.
It is intuitively plausible that the resulting function L : I — S is continuous,
but the precise proof requires some technicalities; see Theorem 5.4.1 of [24].

Clearly, L(t) is differentiable at every point of I\C. On the other hand,
it can be shown that L(t) is not differentiable at any point of C. The main
impact of Lebesgue’s curve was that it put an end to the belief, based on
Peano’s and Hilbert’s examples, that space-filling curves must necessarily
be nowhere differentiable.

We will show that the graphs of x(t) and y(¢) have Hausdorff and box-

counting dimension 1 4 logg 2 = 1.315---. Define the planar sets

X ={(t,z(t)):tel}, Y ={(tyt):tel}
X ={(t,z(t):teC}, Y ={(t,yt):teC}.

The equations (8) imply that X and Y are McMullen carpets with n = 9
and m = 2, as illustrated in Figure 6.

McMullen’s formula (4) yields
dimy X = log, (21°g9 2 4 gloso 2) =1+ logg 2,

12



Figure 6: The McMullen carpets representing the coordinate functions of Lebesgue’s

space-filling curve, restricted to the Cantor set C.

with the same value for the box-counting dimension since each ‘row’ in the
diagram in Figure 6 contains two affine images of X. Since X \X consists
of a countable union of open line segments, its box-counting dimension is 1.
Hence,

dimH X = dimB X=1+ 10g9 2.

The same argument applies to Y.

Generally, if C' is replaced by a Cantor set of dimension ¢ (0 < § < 1),
the resulting graphs of z(¢) and y(¢) have (box and Hausdorff) dimension
1+ %. This shows that a wide range of dimensions is possible for the graphs
of coordinate functions of space-filling curves. In fact, any two numbers d;
and dy in the interval [1,2] can be the dimensions of the two coordinate
functions of a space-filling curve. To see this, let Cj be a ‘thin’ Cantor set of
dimension zero. In the same way as above, Cj can be mapped continuously
onto the unit square, with coordinate functions z(¢) and y(¢). Now consider
a particular interval, say [a,b], that was removed in the construction of
Cy. Choose continuous functions ¢ : [a,b] — [0,1] and % : [a,b] — [0,1]
whose graphs have Hausdorff dimensions d; and ds, respectively and such
that ¢(a) = z(a), ¢(b) = x(b), ¥(a) = y(a) and ¥(b) = y(b). Now extend
the definitions of z(t) and y(t) to (a,b) by putting z(t) = ¢(t), y(t) =
1(t). On the other removed intervals, simply define z(¢) and y(¢) by linear

interpolation, as before. Since the restrictions of the graphs of z(t) and
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y(t) to Cp have dimension one, the full graphs have dimensions d; and ds,

respectively.

5 Pdlya’s space-filling curves

In 1912, Sierpinski [25] proposed a continuous mapping from the unit interval
onto an isosceles right triangle. Sierpinski’s space-filling curve was studied
further by Knopp in 1917, and it is now known as the Sierpinski-Knopp
curve. In 1913, Pélya [22] generalized Sierpinski’s example to obtain a one-
parameter family of space-filling curves, which we now describe in detail.
Let A be any right triangle, and divide it into two subtriangles Ay and Ay,

each similar to A, as shown in Figure 7.

Ao Ay

Figure 7: The right triangle A, and its similar subtriangles Ao and A;.

Let ¢p and ¢; be the affine transformations which map A onto Ay and
Ay, respectively. For t € I, let ¢t = (0.t1t2t3... )2 denote the binary expan-

sion of t. Since ¢y and ¢, are contractions and A is compact, the intersection
o0
() d o0, (A)
n=1

consists of a single point; denote it by II(¢). It is easy to see that the function
IT thus defined maps I onto A, and that, for those numbers ¢ having two
binary expansions, II(¢) does not depend on the choice of expansion. With
some additional effort, it may be seen that II is continuous (see [22]).

The main novelty of Pdlya’s curve was that, unlike the curves of Peano

and Hilbert which have quadruple points, Pélya’s curve has at most triple
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points whenever the ratio of the length of the shorter side over the length
of the hypotenuse is transcendental. (See [22] or [24, Th. 4.6].)

Much later, another surprising difference was discovered: Pélya’s curve
has a much more subtle differentiability structure. Denote by € the smallest
of the two acute angles of A. Lax [15] and Bumby [2] showed that II(¢) is
nowhere differentiable if 30° < # < 45°; that it is non-differentiable almost
everywhere and has derivative zero on an uncountable set if 15° < 6 < 30°;
and that it has derivative zero almost everywhere if § < 15°. Prachar and
Sagan [23] proved that the same is true for the coordinate functions of II(#).

Clearly, there is more than one natural choice for a coordinate system
here, with different choices yielding different pairs of coordinate functions for
II(t). We choose a frame with the hypotenuse of A lying along the positive
z-axis, as in Figure 8. However, the results presented below are valid for
any rectangular coordinate frame.

Fix the length of the hypotenuse to be 1, and let a denote the abscissa of
the altitude separating Ay and Aq; see Figure 8. Let 2(t) and y(¢) denote the
corresponding coordinates of TI(¢). Figure 9 shows their graphs for selected
values of a. As can be seen, the graphs become more and more irregular as

a decreases.

a(l —a)

Figure 8: Two coordinate systems for Pélya’s space-filling curve.

It will be convenient to consider a second coordinate system (z',y'), with
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1 0.5
0.8 0.4
0.6 0.3
0.4 0.2
0.2 0.1
o ™ o
o 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1
1 ]
0.8 0-41
0.6 0-31
0.4 0.27
0.2 0.14
o o d
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
1 ]
0.4+
0.8 ]
0.3 4
0.6 b
0.2 4
0.4 ]
0.14
0.2 ]
o o o
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
1 0.25 1
0.8 0.2
0.6 0.15
0.4 0.1
0.2 0.05
o e L o
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 9: Graphs of z(t) (left column) and y(t) (right column, with variable vertical
scale). Top: a = 0.5, when @ = 45° (the Sierpiiski-Knopp curve). Second from top:
a = (3-+/5)/2 = 0.3819, when a/(1 — a) is the golden mean. Second from bottom:
a = 0.25, when 8 = 30°. Bottom: a = (2 —/3)/4 ~ 0.067, when § = 15°.
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axes parallel to the two sides of A abutting the right angle; see Figure 8.
Note that the (', y')-frame is obtained by rotating the (z, y)-frame clockwise
by 0. Let 2/(t) and '(¢) denote the corresponding coordinate functions.
By continuity of II(¢), the graphs of z(t), y(t), 2(¢) and y'(¢) are compact
connected sets in the plane. Denote them by X,Y, X’ and Y’, respectively.

The following two theorems are our main results.

Theorem 5.1 The box-counting dimension dg of X,Y, X' and Y' is given
by
dp =1+ logy(vVa+ V1 —a) =1+ logy(sinf + cos f).

Theorem 5.2 The Hausdorff dimension dy of X,Y, X' and Y’ satisfies the

inequalities
1+ [—alogga — (1 —a)log,(1 —a)] < dy <1+ logy(va+ V1 —a).

For the case a = 1/2 (the Sierpinski-Knopp curve), Theorem 5.2 gives
the exact Hausdorff dimension di = 3/2, but for other values of a we must
be content with estimates. As Figure 10 shows, the bounds are quite close
when ¢ is not too far from 1/2. The largest distance between the bounds
is about 0.12, and occurs around a ~ 0.05. It would be of interest to know
whether the calculation of dy breaks into different cases along the same
lines as the differentiability of the curve II(¢). In fact, we do not even know

whether dy varies continuously with a.

1 . 1
] / 0.104
4 ]
1/

Figure 10: The bounds of Theorem 5.2 (left), and their difference (right).
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The rest of the paper is devoted to the proofs of Theorems 5.1 and 5.2.
A first useful observation is that the graphs X, Y, X’ and Y’ each consist
of affine contracted images of two of the other three graphs. To see this,
note that the left and right halves of each graph trace the corresponding
coordinate function as II(¢) traverses the smaller subtriangle Ay and the
larger subtriangle Aj, respectively. Recall that Ay = ¢o(A) and Ay =
¢1(A). Since the z-axis is the image of the y'-axis under ¢ and is parallel
to the image of the z'-axis under ¢;, we see that the left half of X is a
contracted image of Y’ and the right half is a contracted image of X'. This
is shown in the top left diagram in Figure 11. Similarly, the y-axis is the
image of the z'-axis under ¢ and is parallel to the image of the y'-axis under
¢1, with the orientation reversed. Hence Y consists of a contracted image
of X’ and one of Y’ the latter reflected vertically; see the top right diagram
in Figure 11. The remaining two diagrams can be understood similarly.
(Observe that the point where the altitude meets the base of A has (z,y)-
coordinates (a,0), and (z',%')-coordinates (a\/a,av/1 —a).)

Note that the rectangles containing the affine images of X, Y, X’ and
Y’ do not “line up” in horizontal strips, as was the case in sections 3 and 4.
This severely complicates the determination of the Hausdorff dimension.

To simplify notation, write

A ==t),  folt)=y®), fs@) =), ful)=y?),

and let F; denote the graph of f;, for i = 1,...,4. Let V = {1,2,3,4}.
We can represent the relationships in Figure 11 by a tuple (G,r) where
G = (V, &) is the directed graph with vertex set V and set of edges € C V xV
shown in Figure 12, and r is a labeling on £. A directed edge e = (u,v)
from u to v (u,v € V) indicates that F, contains an affine image of F;,. The
corresponding affine mapping is denoted by T, or Ty, ,, and the label r(e) of

e is the contraction ratio of T, in the vertical direction. Formally, we have

18



Xl
a(l —a)
a Va4
X | =~ |y Yy | — | X'|Y
0 1 0 1
1—a
Ja
D% _
XI — Y a l—a Yl — X Y (Z\/a
0 1 0 1

Figure 11: The relationships between X,Y, X" and Y'. A bar indicates a top-to-bottom

reflection.

the relationship
F, = U Tuv(Fv)a u€ V.

Observe that the similarity maps ¢ and ¢; have contraction ratios y/a and
v 1 — a, respectively. Thus, from each vertex v € V emanate exactly two
edges, say e and €', such that r(e) = y/a and r(¢’) = v/1 —a.

l1—a

(X) 1 3 (X')
l1—a

\/6< Va va )x/&
l1—a

K e ——

1—a

Figure 12: The digraph G, labeled with the vertical contraction ratios of Figure 11.

Proof of Theorem 5.1. Since the digraph G is homogeneous and the
affine mappings T, do not involve “shears”, the box-counting dimension of

F, follows from an easy modification of Example 11.4 in [4]. O
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The upper bound in Theorem 5.2 is now an immediate consequence of
Theorem 5.1, since the Hausdorff dimension of a set is never greater than its
box-counting dimension. For the lower bound, we use the “mass distribution
principle”, which says that if p is a finite measure on a set F' and ¢ and ¢

are positive numbers such that
u(U) < c|Uf?

for all sets U with |U| < ¢, then dimg F' > s. (See Falconer [4, Ch. 4].)

Before constructing an appropriate measure p, on F,, some additional
notation is needed. For v € V, denote by J, the smallest closed rectangle
with edges parallel to the coordinate axes which contains F,. Let I'} be the
set of all directed paths of length n in G with initial vertex v, and let I'y° be
the set of all such paths having infinite length. For a path v € T'S°, let v|,
denote the finite subpath of v consisting of the first n edges of . For a path
v = (€1,...,e,) in '}, let 7(y) € V denote the terminal vertex of v, let T
denote the composition Te, o - 0 Te, , and let R(y) := Ty (J(y)). Observe
that

FUCU{R(’)/):’)/EF:}}, n=12,..., ve.

Finally, for a rectangle R with edges parallel to the coordinate axes, let £(R)
denote the height of R.

We are now ready to construct the measures p,. Fix v € V. Define
ple) =r(e)?,  e€E, (9)

and extend p to I'} by putting p(y) = p(e1)---plen) if v = (e1,...,€n).
From the labeling shown in Figure 12 it is clear that p defines a probability
measure on I'7. By Kolmogorov’s consistency theorem, there is a unique
probability measure i, on the Borel sets of I';° whose restriction to the
cylinder sets {y € I')° : 7|, = (e1,...,en)} agrees with p.

Define the mapping ¢ : I''° — [0,1] by t(y) = (0.t1t2ts...)2, where
t; =0ifr(e;) = Va,and t; = 1 ifr(e;) = /1 —a, vy = (e1,e2,...). In other
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words, t(7) is the number in [0, 1] whose jth binary digit is 0 if the jth edge
of 7 is labeled v/a, and 1 otherwise. Define mappings #® : I'*® — A and
my : I'S° — F, by

() = 10Ey),  m(y) = (), fo(t()).

Through these mappings, ji, induces probability measures u® on A and p,
on F, defined by

For convenience, we consider y, to be defined on all of R?. Let i, be the
projection of p, onto the vertical axis. That is, fi,(A4) := wy([0,1] x A),
A C R. Note that alternatively, /i, can be thought of as the projection of

© onto the appropriate coordinate axis in Figure 8.

Key observation: p® is the uniform distribution on A. Hence, fi, is

absolutely continuous with respect to Lebesgue measure on R.

This follows since the subtriangles Ay and Ay have areas in a ratio of a :
(1—a) =p(e) : p(e'), where e and €’ are any two edges in G emanating from
the same vertex and labeled y/a and /1 — a, respectively. Hence picking an
edge at random in G according to the probability distribution p corresponds

to picking a subtriangle at random with probability proportional to its area.

Proof of the lower bound in Theorem 5.2. If v = (ej,e2,...) € T'9°,

the contraction ratios
r(ei),r(e2),...

are independent, identically distributed random variables with respect to

fty. Thus, the Strong Law of Large Numbers implies that
(r(e)-rlen)™ - Li= (Vo (VI= @)™, fiy—ae,  (10)

SO

[K(R('ﬂn))]l/n - Lv Iav — a.e. (11)
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Fix ¢ > 0. By (11), there exist a positive integer N and a subset F' of ['®

of positive fi,-measure such that v € F implies

(1 —)"L™ < L(R(y|n)) < (1 +€)"L",  n>N. (12)

Put F := 7, (F).

Now choose § > 0 such that § < (1/2)", and imagine a covering of F' by
squares of sides less than or equal to d. Let U be such a square. Without
loss of generality, we may assume that the side of U is exactly (1/2)" for
some n > N, and that U lies completely inside some rectangle R := R(7|,),
where y € F. Write 7 = 7(v],), and T = T,,- Note the factorization

Nv(U) = ,UIU(R):U'T(Til(U))' (13)

The first factor in (13) is estimated by

po(R) = p(yln) < const - [E(R)]?,

in view of (9). Since T~ '(U) = [0,1] x [, 8] for certain numbers « and 3
with (8 — «)/¢(U) = 4(J;)/¢(R), the second factor may be estimated by

tU)

e (T () = ([, B]) < comst - g

using the absolute continuity of fi.

Combining these estimates and using (12) yields
11u(U) < const - (1 +€)"L™(U) = const - |U|*®),
where

log(1 +¢) +log L
—log2 ’

s(e) =1+

It follows by the mass distribution principle that
dimgy F, > dimy F > s(e).

Letting ¢ N\, 0 and recalling the definition of L from (10) completes the
proof. O
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Remark 5.3 The difficulty in obtaining the exact dimension of the F, ap-
pears to lie in the fact that for fixed n, the rectangles R(y) (y € I'}') are
of varying sizes, and do not line up neatly in horizontal strips. This pro-
vides a sharp contrast with the settings of McMullen, Kono, and Takahashi
described in sections 3 and 4.

Observe that the proof of the lower bound depends in a a crucial way on
the absolute continuity of the measures fi,,. In order to try to obtain a better
bound, one might want to replace the probability measure p defined by (9)
with a measure that makes p(e) proportional to r(e), and define measures
by, by and fi, correspondingly. If one could prove that the projection i, has
dimension 1, it would follow as in Bedford and Urbanski [1] that dimy F,, =
dimp F,,. However, checking whether /i,, has dimension 1 appears to be hard,
as fi, cannot be expected to be absolutely continuous. Other measures can
of course be tried, but one keeps running into the problem, caused by the

irregular arrangement of the rectangles, of finding the dimension of /i, .
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