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Abstract

Explicit formulas are given to recursively generate the moments of the mean M for Dubins-
Freedman random distribution functions with arbitrary base measure p. Using a standard
inversion formula for moments of a distribution on the unit interval, the distribution of M is
approximated for several natural choices of . The support of the mean is also considered. It is
shown that the support of M is connected whenever p is concentrated on the vertical bisector
of the unit square S, but may have arbitrarily many gaps otherwise.

1 Introduction

In their 1967 paper, Dubins and Freedman [3] introduced the following method for constructing a
probability distribution on the unit interval [0,1] at random. Fix a base measure p on the unit
square S = [0, 1]?. Pick a point (x,y) in S at random according to this measure x. The chosen point
divides S into four rectangles, each having a vertex at (x,y). Call the lower left rectangle L, and
the upper right one R. The unique affine transformations that map S into L and R, respectively,
scale the base measure p into measures py and pg, concentrated on L and R, respectively. Next,
select a point (z1,yr) in L according to py, and a point (zg,yr) in R according to ugr. These
points now determine lower left and upper right rectangles within L and R (four rectangles in all),
and respective scaled versions of u. Continuing in this manner one obtains, at the nth stage, a set
of 2" closed rectangles. Dubins and Freedman show that, if u assigns mass 0 to the corners (0, 0)
and (1,1) of S, with probability 1 the intersection of these sets of rectangles is the solid graph of a
distribution function F'.

The above procedure has been generalized by Kraft [8], Graf, Mauldin and Williams [6], and
Mauldin and Monticino [11]. Other methods for constructing a probability measure at random
were proposed by Ferguson [5], Mauldin and Williams [10], and Mauldin, Sudderth and Williams
[9]. Hill and Monticino [7] used barycenter arrays to construct a distribution at random with a given
mean or distribution of the mean. Their work was recently extended by Bloomer [1] to generate
distributions with a given mean and variance.

None of the other methods mentioned above generate distributions with a fixed mean and, in
general, the distribution of the mean is difficult to compute. Cifarelli and Regazzini [2] calculated
the distribution of the mean for Dirichlet process priors (see [5]) using advanced analytical tools.
For Dubins-Freedman priors, some work in this direction was done for the case where the base
measure g is the uniform distribution on the vertical bisector D1 = {(z,y) € S|z = 1/2}. Mauldin
and Williams [10] calculated the variance of the mean M, as an application of their Polya tree



construction. Generalizing their method, Monticino [12] obtained the complete moment sequence
of the mean (given implicitly by a difference equation).

The distribution of the mean is a very useful tool in nonparametric Bayesian statistics. Specif-
ically, a decisionmaker trying to produce inference concerning the mean of a population may have
prior beliefs about the possible values of the mean. If a nonparametric prior is assumed, it should
be compatible with these prior beliefs. Hence to identify appropriate nonparametric priors, it is
important to assess their induced distribution of the mean.

The main purpose of this paper is to show that the moments of the mean can be calculated
directly, using only the statistical self-similarity of the Dubins-Freedman construction (and without
reference to Polya tree schemes). In fact, the method outlined below works for any base measure y on
the square, though calculation of the moments in most cases requires the numerical approximation
of certain integrals with respect to . However, for several natural choices of u, such as the uniform
distribution on S or the uniform distribution on D7, the moment sequence can be generated exactly
to arbitrary depth, and in fact in these cases all of the moments turn out to be rational.

Theorem 2.1 below provides a recursive relation that determines the moments of the mean M),
implicitly for any base measure u. Since a distribution on a compact interval is uniquely determined
by its moment sequence, the distribution of A/, can then be approximated using a standard inversion
formula. Examples are given for several natural choices of u. Some special attention is given to
base measures concentrated on the vertical bisector Dy, and it is shown that for such measures p,
the variance of M), is tightly connected to the variance of u (see Corollary 2.2).

In Section 3, the support of M, is considered. As a first result, it is shown that M, is degenerate
if and only if u is supported on a certain curve with endpoints (0,0) and (1,1). This surprising
fact follows immediately from Theorem 2.1. Its consequences should not be overestimated, since
the class of distributions that can be obtained using such a base measure is too small to induce a
useful prior. As an extreme case, the only way to generate distributions with almost-sure mean 1/2
is to generate the uniform distribution on [0, 1] almost surely.

Next, it is shown that whenever the base measure p is supported on the vertical bisector D1,
the support of M, is connected (that is, a point or an interval). That this may fail for more general
base measures is illustrated in Example 3.3, which shows that the number of gaps in the support
of M, may be arbitrarily large. Some sufficient conditions for the support of M, to be connected
are given next. The author does not know an abstract characterization of those base measures for
which the mean has a connected support.

In Section 4 it is shown that the mapping p — M, reverses the stochastic ordering of probability
measures. That is, if u and v are (one-dimensional) base measures supported on the vertical bisector
D, and p is stochastically less than v, then M, is stochastically larger than M,.

Section 5, finally, contains a list of open problems.

2 Moments of the mean

The construction described in the Introduction can be formalized as follows. Call a probability
measure p on S a base measure if it assigns mass 0 to the corners (0,0) and (1,1). Fix such a base
measure g, and set Uy g = Vi o =0, and Uy » = V3 2 = 1. Next, choose a point Py ; = (X1,1,Y1,1) in
S according to p, and set (U1,1,V1,1) = (X1,1,Y1,1). This completes stage 1. Proceeding inductively,
assume that after stage n, a set of points {(Uy, ;, Vi.;) : 1 < k < n, 0 < j < 2} has been constructed.
Select points Ppt1,; = (Xpt1,5, Ynt1,5), J =1,2,...,2" in S according to u, independently of each
other and of all the points Py ;, 1 <k <n,j=1,2,..., 2F=1 chosen at earlier stages. Define

(Un+1,2j: Vn+1,2j) = (Un,j7 Vn,j)ﬂ .] = 07 17 RN 2n7



and

Unt1,2j+1 = Unj + Xnt1,j+1(Un j+1 — Un j)s

)

Vat1,2j+1 = Va,j + Xnt1,j+1(Vaj+1 — Vi),

j=0,1,...,2" —1.

For each n, consider the closed rectangles parallel to the axes whose lower left and upper right
vertices are (Un],Vn]) and (Up,j+1, Va,j+1), respectively (j = 0,1,...,2™ — 1). There are 2" such
rectangles. Let A, be their union. Then, as proved by Dubins and Freedman ([3], Section 2), with
probability 1 the limit ())_, A, is the solid graph of some distribution function F.

Assume from now on that F' is a random probability distribution function constructed by the above
procedure, using a base measure u. The mean of F' is the random variable

M, = / x dF(z).
[0,1]

When no confusion about the underlying base measure is possible, the subscript p will be dropped

and M,, will be simply denoted by M.
For n > 0, let a,, be the n-th moment of M:

a, = EM"™, n=0,1,2,....
Of course, ag = 1.
Theorem 2.1 The sequence {ap}, is determined implicitly by the recursive equations

n i n—j
:Z (])( k )cn,j,kafjaka n:071727"'7 (1)

=0 k=0

cn,]k_// E(1 = )tyT (1= )" du(a,y).

Note that the right hand side of (1) depends on a,. Subtracting the terms containing a, and
solving for a,, gives

n—1n—j n—1
n—7J
ap = (]- — Cn,n,0 — Cn,o, n E E < ) < >Cn,] kGG + § < )cn,(),kak ) (2)
j=1 k=0 k=0

a form more suitable for direct computation of the sequence {a,}.

An important class of base measures are those supported on the vertical bisector of S, the line
segment Dy = {(z,y) € S|z = 1/2}. Any measure p in this class can be written as a product
measure of point mass at 1/2 and some probability measure v on [0, 1]. To keep notation simple, p
and v will be identified. Observe that if p is concentrated on Dy, the equations (1) simplify to

(B EE ()

where

where

dn,j =/ Y (1—y)" 7 du(y).
[0,1]



Corollary 2.2 Suppose p is supported on Di. Let m; := [z du(z), i = 1,2,..., and let 0® =
mo — m? denote the variance of . Then the variance of M is given by

o2 o2
Var(M) = i — i)~ 3% 2(mi(l—my) = o7}
As an immediate consequence, 2 2
T_o,2 <Var(M) < ER (4)

2

where the lower bound is attained whenever my = 1/2.

Proof. Calculate a; and as using (2), and simplify the expression Var(M) = az —a?. O

Note that (4) shows that the variances of p and M are intimately related: bounding the left side
further and assuming o # 0 one obtains 2/7 < Var(M)/o? < 1/3.

Several examples now follow. The density graphs in Figures 1, 2 and 3 were obtained by
approximating the distribution function of M using the standard inversion formula (cf. Feller [4],

page 223)
P(M <t)= lim > Z ( )( >(—1)jak+j.

k<nt j=0

Example 2.3 If y is the uniform distribution on S, then

an = 71 e (n;j)au
VTR )

Thus, a1 = 1/2, ax = 17/56, az = 23/112, a4, = 2801/18816, etc., and Var(M) = 3/56. An
estimate of the density of M using the first 128 moments is given in Figure 1.

Example 2.4 If p is the uniform distribution on Dy, then

sy 5 () &

Thus, a; = 1/2, az = 11/40 (as found by Mauldin and Williams [10]), a3 = 13/80, a4 =
12661/124800, etc., and Var(M) = 1/40. Equation (5) is significantly simpler and more effi-
cient than the equations given by Monticino [12], who computed the a,, for this special case using
a completely different technique.

An estimate of the density of M appears in Figure 2.

Example 2.5 If y is uniform on the diagonal from (0,1) to (1,0), then

n—j

no () )
tn = 2n+1ZZ

j=0 k=0 j—i—k)

o,y 0.

Thus, a; = 1/2, ay = 19/56, ag = 29/112, a4 = 207107/984704, etc., and Var(M) = 5/56.
An estimate of the density of M is given in Figure 3.



Example 2.6 Let u be supported this time on the horizontal bisector D2 = {(z,y) € S|y = 1/2},
and denote by p* the reflection of i in the main diagonal of S. Thus p* is a base measure supported
on D;. Note that choosing F at random with base measure p is equivalent to choosing F~! at
random using the base measure p*. From the relationship

M(F) = /[0 ; r dF(z) = /[0 ; F7Y(t)dt=1— M(F™!),

it follows that M, 29 M,~. In particular, if p is symmetric, M, L. M,, so both p and p*
induce the same distribution of the mean. For example, if u is the uniform distribution on D-, the
moments of M are given by Example 2.4, and its density appears in Figure 2.

Corollary 2.7 If i is concentrated on Dy or on Do, then p is uniquely determined by the distri-
bution of M.

Proof. Using (3), and expressing d, ; in terms of the moments of y, it follows easily that the a,’s
determine the moments of u. Since u is supported on a bounded interval, u is determined by its
moments. O

Proof of Theorem 2.1. For brevity, let (X,Y) = (X1,1,Y1,1), the first point in the random
construction of F'. Define

B, =Y"! x dF(z),
[0,X]
B, =(1- Y)*l/ z dF(z).
(X,1]
Then B; and By, if well defined, are the F-barycenters of [0, X] and (X, 1], respectively, and
Bs, if Y=0,
M={B, if Y =1,

YB +(1-Y)B,, if 0<Y <1.

From the construction of F' it is clear that B; and By are conditionally independent given (X,Y").
Moreover, provided 0 <Y < 1,

(B|(X,Y) £ XM, and (Bo|(X,Y)) <L X + (1 - X)M.
Thus,

EM™(X,Y)] = E[(YB1 + (1 =Y)B2)" [tocy <13 [(X, V)]
+ E[B [iy—i3|(X,Y)] + E[B3 Ity —y | (X, Y)]

(j) Yi(1 — ¥y BBI|(X, V) BB (X, V)]

n n—j .
(7) YI(1-Y)" X0y (" J)X”_j_k(l — X)kay,
j=0 J k=0 k

n n—j .
3 <”> (” - ]>Yj(1 — V)X (1 = X)kajay.
0 k=0 J k

Taking expectations on both sides completes the proof. O

.
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Figure 1: Estimated density of M for the base measure p in Example 2.3, based on 128 moments.
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Figure 2: Estimated density of M for the base measure p in Example 2.4, based on 128 moments.
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Figure 3: Estimated density of M for the base measure p in Example 2.5, based on 128 moments.



3 The support of M

This section considers the support of the mean M. The following notation will be used in this
section. First, recall from the beginning of Section 2 the definition of the random points P, ; =
(Xn,j, Yn,j), used in the construction of F'. Observe particularly that these points are i.i.d. with
common distribution p. For a base measure u, supp(p) denotes the support of p (that is, the
smallest closed subset of S to which p assigns measure 1). Similarly, supp(M) is the support of M,
the smallest closed subset A of [0,1] such that P(M € A) = 1. For sets A and B of real numbers,
A @ B denotes the set {a+bla € A and b € B}. The length of an interval I is denoted by |I|, but if
I is a finite set of points then || denotes the cardinality of I. Finally, for a point p in S and r > 0,
B(p,r) denotes the open disk with center p and radius r.

The first result in this section describes the set of base measures p for which the support of M is
degenerate. To gain some insight in this surprising theorem, assume for the moment that p assigns
probability 1 to a single point (r,s) in the interior of S. Then (X, ;,Y, ;) = (r,s) for all n > 1
and j = 1,2,...,2" 1. Hence, the portions of the graph of F lying inside the lower left and upper
right rectangles determined by (r,s) are scaled copies of the entire graph of F. (In other words,
the graph of F' is a self-similar set). It follows that the barycenter of F on [0,r] is by = M, and
the barycenter on (r,1] is by = + (1 — r)M. Thus,

M=sbi+(1—-s)by=srM+(1—-s){r+(1—r)M}
={rs+ (1 —-r)(1=9)}M +r(1—s),

and hence M =r(1 —s)/(r + s — 2rs).
Conversely, suppose a “target” mean m is given, where 0 < m < 1. Then M = m if and only if
r(1 —s) =m(r+ s — 2rs). Solving for s gives

(1 —-m)r
= 7 6
STt (1 -2m)r (6)
It is then natural to guess that for any base measure p concentrated on the set of points (r,s)
satisfying (6), M = m almost surely. Theorem 3.1 below shows that this is indeed the case.
Define the family of curves

(1—m)x

C(m).—{(m,y)ES.y—m+(1_2m)x}, 0<m<1.
Let C(0) := {(z,y) € S: 2 =0o0ry = 1}, and C(1) := {(z,y) € S : x = 1 or y = 0}. For
0 <m < 1, C(m) is a curve whose endpoints are (0,0) and (1,1). Moreover, C(m) is convex if
m > 1/2, concave if m < 1/2, and degenerates to the main diagonal of S if m = 1/2.

Say a set A is bounded above by C(m) if for each point (z,y) in A there exists a z > y such that
(z,z) € C(m). Similarly, A is bounded below by C(m) if for every (z,y) in A there exists a z < y

such that (z,z) € C'(m).
Theorem 3.1 Let 0 <m < 1.

(i) M =m a.s. if and only if p is supported on C(m).

(i1) If supp(u) is bounded above by C(m), then M > m a.s.
(i) If supp(u) is bounded below by C(m), then M < m a.s.



[4%4

Proof. To prove the “if” part of (i), it is clearly sufficient to show that if supp(u) C C(m), then
EM = m and Var(M) = 0. This is a straightforward exercise, using Theorem 2.1. The “only if”
part follows since if supp(p) intersects C'(my) and C(my) for my # ms, then M can be arbitrarily
close to both m; and ms with positive probability. The other statements follow easily from (i) by
monotonicity considerations. O

It is worth noting that if m = 1/2, C'(m) is the main diagonal of S, and thus the distribution
generated is the uniform distribution almost surely. But if m # 1/2, truely random distributions
are generated, though their variability is small. To generate distributions with a fixed mean, it is
much better to use the method described by Hill and Monticino [7].

Theorem 3.2 Suppose j is concentrated on the vertical bisector Dy. If u is not point mass, then
supp(M) is the interval [1 — b,1 — a], where

a = inf{y : u([0,y]) > 0}, b=sup{y : p(ly,1]) > 0}.
(So a and b are the left and right endpoints of supp(u), respectively.)

Proof. From the definition of a and b, it follows that for every € > 0, pla,a + ¢] > 0 and
wu[b —e,b] > 0. The proof involves the construction of binary trees with intervals as their nodes, of

the form
T={Jy;:1<k<m,j=1,2,...2F"}. (7)

For such a tree, denote .J; 1 by root(T), and let
T'={Jy;:2<k<n,j=12,...,2"?}

and
T"={Jy;:2<k<n,j=2"2+1,... 21}

denote the left and right subtrees of T, respectively. Thus T is uniquely determined by the triple
(root(T), T!, T").
If T is given by (7), let {Y € T} denote the event that Y, ; € Jp; forall 1 < k < n, j =
1,2,...,251. Define
m~(T) =sup{u: P(M >ulY € T) =1},
and
mT(T) = inf{v: P(M <v|Y € T) =1}.

Thus P(m—(T) < M <m™(T)|Y €T) = 1.
We will now construct an array of intervals {I,, x : » > 0,0 < k < 2" — 1} and an array of trees
{Thr:n>0,0<k<2"—1} with the following properties:

Lkl < (3/4)", (8)
U Lk =[1-b1-a4d], (9)
k=1
In,k D) [m_(Tn,k)7m+(Tn,k)]a (10)
and
P(Y € Tny) > 0. (11)



The proof is then completed by the following argument. Given 1 — b < ¢ < d < 1 — a, there exist,
by virtue of (8) and (9), integers n and k (0 < k < 2™ — 1) such that I, ;, C [¢,d]. Using (10) and
(11) it then follows that

Plc< M <d)>P(M € I,y)
>P(M € I, |Y € Tnp)P(Y € T i)
> P(m™(T) < M <m™ ()Y € T, ) P(Y € T 1)
=P(Y € Tyy) > 0.

To construct I, ;, and T, j, observe that for any binary tree of intervals T, if root(T) = [a,a + €],
then

l—a-—c¢

m~(T) > m~(T") +

T {m= (") + 1},
L (12)
m* (1) < gm* (1) + —= {m* (17) + 1},

a—+é¢e
2

while if root(T) = [b — ¢, b],

m=(T) 2 D (1) + 1 (1) + 1),
b 1-b (13)
m*(T) < 2= Em+ (T + _T“{mﬂw) 1.

These inequalities follow since, when considered as a function of {Y;, ;},,;, M is nonnondecreasing
in each of its arguments. The above inequalities suggest the following construction. For brevity,
let e, := (1/2)™. Set Ipp =[1 —b,1 —a] and, for n > 0 and 0 < k < 2" — 1, construct Ip41 o5 and
Int12k41 from I, = [I,7] by

Inyipr =[1/24+ (1 —a —eng1)/2,7/24 (1 — a)/2],
In+1,2k+1 = [l/2 + (]. — b)/2,7‘/2 + (]. — b+6n+1)/2]

It is straightforward to verify inductively that the array {I,:} satisfies (8) and (9). Next, set
Tio={[a,a+1/2]} and Ty ; = {[b—1/2,b]}, and for n > 1 and 0 < j < 2"*! — 1, define T4 ; by

. [a,a+ent1], J even,
t(Tht1,5) =
(i) root(Ty+1,5) {[b —€&n+1,b], j odd.

(ii) T7lz+1,j = T7:+1,j = Tn,[j/2]'

Since each interval in Ty, ;. is of the form [a,a + €] or [b — €, b] for some £ > 0, (11) follows imme-
diately by the independence of the Y} ;’s. Moreover, a routine induction proof using (12) and (13)
establishes (10). This completes the construction, and thereby the proof. O

Theorem 3.2 implies that for any base measure u concentrated on D1, supp(M) is connected. This
may fail for more general base measures. As an extreme example, suppose p gives mass 1/2 to each
of the points (0,1) and (1,0). Then F is point mass at either 0 or 1, so supp(M) = {0,1}. As
the following example shows, the support of M can, in general, have an arbitrarily large number of

gaps.



Example 3.3 Let 0 < r < 1/2, and consider the base measure p that gives mass 1/2 to each of
the points (r,1—r) and (1 —r,r). Let T, be the set of all binary trees T' with points at their nodes,
of the form

T={pr;:1<k<mj=12,.,2""} (14)

where each py ; is either (r,1 —r) or (1 —r,r). By convention, 7o = {0}, the set consisting only
of the empty tree. For a tree T given by (14), define root(T) := p;,1, and define the left subtree
T! and right subtree 7" by T :={py; : 2 <k <mn, j=1,2,...,25 2} and T" := {py; : 2 < k <
n, j=2F2412242 . 21} Write (X,Y) € T if (X, Ys;) = pk,; for all 1 <k < n and
j=1,2,...,2k=1 Define
m~ (T) =sup{u: P(M > u|(X,Y)eT) =1},
mT(T) = inf{v: P(M <v|(X,Y)€T) = 1}.
Since M takes its minimum value when P, ; = (r,1 —r) for all n and j, it follows that m™(() is
the solution of x = r(1 —7)z + (1 — r)rz + 72, so m~(0) = r?[1 — 2r(1 — r)]". By symmetry,
mT(@)=1-—m~(0) = (1 —7r)?[1 —2r(1 —r)]"L. If T is a non-empty tree (of depth n > 1), then
root(T") can take on two different values. If root(T) = (r,1 — r), then

m™(T) = r(1 —r){m~(T") + m~(T")} + 72, (15)
mT(T) = r(1 —r){m™ (T + m*(T")} + 2.
On the other hand, if root(T") = (1 —r,r), then
m ™ (T) = r(1 —r){m ™ (T") + m ™ (T")} + (1 — 1), (16)
mT(T) = r(1 —r){m™(T") + m*(T")} + (1 —r)%

Since m™(0) —m~(0) = (1 —2r)/(1 — 2r(1 —r)), (15) and (16) imply that for every tree T € Ty,
_ 1-2r

S 1-2r(1—7)
=:An.

m*(T) —m™(T) 2r(1—=r)"

Note that A\, — 0 as n — oo. Thus, the support of M can be expressed as
o0
supp(M) = (1] An,
n=1

where
Ap= | m (@), m™(T)].
TETn
Forn > 0,let L, = {m~(T) : T € T,}, and define d,, := (1 —2r)(r(1 —r))". From (15) and (16) it
follows that L,+1 = AUB, where A =r(1—r)(L, ® L,)+7? and B =r(1—7)(L, ® Ly,) + (1 — 7).
Notice that (1 —r)? —r? = dp. A routine induction argument now shows that

n—1
Lp={m (0)+ > kid; :0<k; <2,0<i<n—1}. (17)
i=0
Define 2@ )
* oL . — . on —ard-r
n .—max{n.)\n<dn_1}—max{n.2 < =7 }

10



Claim. If n < n*, then for all x #y € Ly, |y — x| > Ay.

Proof. Let x = m™~(0) + E?;()l kid;, and y = m~(0) + Z?;Ol lid;. Let ig := min{i : k; # l;}.
Assume w.l.o.g. that k;, <l;,. Let ¢ =2r(1 —r). Then

Yy—xr = nz_:(lz — kz)dl Z dio — nz_: QZdl = dio — nz_: (1 — QT)qi
i=io i=io+1 i=io+1
i gt n—ig—1
= (=20 (=) - T - g
1-2r io io+1 n
= =2 1= [(r(1=r)°{1—2r(1—r)=2°Tr(1—r)} + (2r(1 —r))"]
1-2r

> m(%(l — T‘))n = )\n O

Thus, for n < n*, A, consists of |L,| disjoint, non-touching intervals. For n > n*, d,—1 < A,
and therefore A,, = A,_1, since no more new gaps between the intervals are created. It follows
that supp(M) = A,«. The number of intervals in supp(M) is |L,| = 2 HZ;II(QI” +1). For instance,
if r =1/10, then n* = 3, and supp(M) consists of |Lz| = 30 disjoint intervals. O

The above example raises the natural question when the support of M is a connected set. One
sufficient condition was given in Theorem 3.2; another is given by the following proposition. Define

D(p) = {m € [0, 1] supp(p) N C(m) € {(0,0), (1, 1)}},
and let m; := inf D(u) and m* := sup D(u).

Proposition 3.4
D() C supp(M) C [my, m"].

Proof. The second inclusion is an immediate consequence of Theorem 3.1. The first inclusion can
be seen as follows. For each m € D(u) and each § > 0, there is a point p = p(m) € C(m) such that
w(B(p,0) NS) > 0. Given € > 0, we can choose 6 > 0 and n sufficiently large so that

(Pp;j € B(p(m),8) forall 1 <k <n,j=1,2,....2" Y= m-c< M <m+e. (18)
Since the event on the left side of (18) has positive probability, this completes the proof. O

Corollary 3.5 If for every m; < m < m", supp(u) intersects C(m) at a point other than (0,0) or
(1,1), then supp(M) = [my, m"].

Corollary 3.6 If supp(u) — {(0,0),(1,1)} is connected, then supp(M) is connected.

Proof. For each m; < m < m", supp(u) intersects C'(mm) at a point other than (0,0) or (1,1). O

4 The stochastic ordering reversed

The final result of this paper concerns base measures concentrated on the vertical bisector D;.
For such measures, the mapping u — M, reverses the stochastic ordering <®¢, as will be shown
below. Recall that if X and Y are random variables, then X is stochastically less than Y, denoted
X <ty iff P(X > t) < P(Y > t) for all t. Similarly, if 4 and v are probability measures on [0, 1],
then p <%t v iff p((t,1]) < v((t,1]) for all ¢.
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Theorem 4.1 If u and v are base measures supported on Dy and p <5' v, then M, <%* M,,.

Proof. For an event A in the sigma algebra of the array {V,,; :n > 1,7 =1,...,2""'} let P,(A)
denote the probability of A when the distribution of the Y}, ; is u. Define P,(A) similarly. For
n > 1, define the vector

. _—
Vo= (Y1,1,Y2,1,Y2,2,Y5,1,Y32, Y33, Ya4,..., Yn1,...,YVpon1) € R* 70

Given Y, = &, the values of the random distribution function F at the points k/2" k=0,1,...,2",
are completely determined. Say F(k/2") = z, 1, where the z, 1 are easily expressible in terms of
the components of Z. Define

2" —1

F™(t) = )" znkXik/2n (k4+1)/2m) (1),
k=0

2" —1
FE) = znks1Xin/2n (1) 2m) (8)-
k=0

Let m™(Z) and m™(Z) be the means associated with the distributions F~ and F* respectively.
That is, m™ (&) = [tdF~(t), and m™ (&) = [tdF*(t). It is easy to see that m~ and m™ are
decreasing functions from IR?" ! to IR. Define M, = m~(Y,), and M= m*(Y,). Clearly, M,
increases almost surely and M, decreases almost surely. Moreover,

M, <M < M,

and

My - M, = (1/2)",
where the last equality follows since the mean of a distribution function G on [0,1] is the area of
the region in S that lies above the graph of G. Thus it follows that

Pu(M <t) = lim P,(M; <t), (19)
n— 00

and likewise with P, replaced by P,. Hence the proof will be finished once it is shown that

—

P,(m~(Y,) <t) < P,(m~(Y,) < t).

Since m™ : R*~' — IR is decreasing, this follows immediately from Theorem 1.A.3.(b) of Shaked
and Shanthikumar [13]. O

5 Open problems
This paper ends with a list of open problems that deserve further attention.

1. Which distributions on [0, 1] are the distribution of the mean for some base measure g,
concentrated (a) on S? (b) on D;?

2. Prove or disprove that the distribution of M is either degenerate or continuous. Under what
conditions does M have a density?

3. Find necessary and sufficient conditions on g such that the support of M is connected.

4. Determine “natural” base measures for which the distribution of the mean can be calculated
in explicit form.

5. Prove (or disprove) that if p is concentrated on D; and p is unimodal, then the distribution
of M is unimodal.

12
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Appendix: Calculation for the proof of Theorem 3.1

Claim: If y is supported on C(m) = {(:r,y) €S:y= %}, then EM = m and Var(M) =
0.

Proof. Note that (z,y) € C(m) is equivalent to

m{zy + (L -—z)(1—y)} =m—a(l-y).
Hence if (X,Y) is a random point with distribution u, then

m{XY+(1-X)1-Y)}=m—-X(1-Y) a.s. (20)
Recall a; = EM and ay = EM?, so it must be shown that a; = m and a; = m?. By Eq. (2),
C1,0,0
aq

T1- €1,1,0 — 1,01
soay =m iff m(1 —ec1,10 —¢€1,01) = €1,0,0- Indeed, using (20):
m(l—cii0—co01)=m1-EXY+(1-X)1-Y)))
=m—Em—-X(1-Y)]
=E[X(1-Y)]
= €1,0,0-
Next, substituting n = 2 and a; = m in Eq. (2),

1

2 L /2
Z <1> C2,1,k01GE + I;) <k> CZ,O,k“k)

k=0

-1
ay =(1—c22,0—C20,2) (
=(1 12 2 2 2
=(1—c22,0—€202)" (2c2,1,0m + 2¢c211m” + 20,0 + 2¢2,0,1m).
Hence a; = m? iff

2 _ 2
m=(1 — c2,20 — €2,0,2) = 2m(ca,10 + ¢2,0,1) +2m-c2,11 + €2,0,0-

Equivalently,
m?(1 — 2,90 — Cap2 — 2¢2.1,1) = 2m(c2,1,0 + C2,0.1) + C2.0,0- (21)
Indeed,
m?(1 — 290 — Cap2 —2c211) =m*(1 — E[X?Y? - (1-X)*(1-Y)* - 2XY(1 - X)(1-Y)))
=m’(1-EXY +(1-X)(1-Y)]?)
=m? - Em{XY + (1 - X)(1 - Y)}J?
=m? - Em-X(1-Y))?
=2mE[X(1-Y)] - E[X*(1-Y)%],

and
2m(can0+ C201) + 200 =2mEX?Y (1 -Y)+ X(1 - X)(1 - Y)?] + E[X?*(1 - Y)?]
=2E[X(1 -Y)m{XY +(1-X)1-Y)}]+ E[X?(1-Y)?]
=2E[X(1-Y)(m—-X(1-Y))]+E[X?*(1-Y)?
=2mE[X(1-Y)] - E[X?*(1-Y)?].
Hence (21) holds, and the proof is complete. O
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