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Abstract

Correlated random walks provide an elementary model for processes that
exhibit directional reinforcement behavior. This paper develops optimal
multiple stopping strategies - buy/sell rules - for correlated random walks.
The work extends previous results given in Allaart and Monticino (2001) by
considering random step sizes and allowing possibly negative reinforcement
of the walk’s current direction. The optimal strategies fall into two general
classes - cases where conservative buy-and-hold type strategies are optimal and
cases in which aggressive trading strategies of successively buying and selling
the commodity depending on whether the price goes up or down are followed.
Simulation examples are given based on an stock index fund to illustrate the
variation in return possible using the theoretically optimal stop rules compared
to simpler buy-and-hold strategies.

Keywords: Correlated random walk; multiple stopping; buy/sell strategies

AMS 2000 Subject Classification: Primary 60G40, 60G50

1. Introduction

This paper develops optimal multiple stopping strategies - buy/sell rules - for
commodities whose prices follow a generalized class of correlated random walks. The

work extends previous results given in Allaart and Monticino (2001) by considering
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random step sizes and allowing for possibly negative reinforcement of a walk’s current
direction. Interestingly, the optimal strategies fall into two general classes - cases
where a conservative buy-and-hold strategy is optimal and cases in which a very
aggressive trading strategy of successively buying and selling the commodity depending
on whether the price goes up or down is followed.

Define a random walk with correlation (RWC), {Sn}n>0, by So = so € IR, and
Sn =80+ X1 +---+ X, for n > 1, where the increments X7, X5,... form a Markov
sequence in the following way. Let Y, and Yy be real-valued random variables with
finite expectations. For each n € IN, £(X,1]|X, > 0) = L(V3,), and L(Xp41] X, <
0) = L(Y4), where £ denotes probability law. Let p = P(Y,, > 0), and ¢ = P(Y; < 0).
(Assume 0 < p,q < 1 to avoid uninteresting cases.) So, if the price goes up at time n,
it will go up (or stay equal) at time n + 1 with probability p and will go down with
probability 1 — p. The distribution of the price change at time n + 1 after a price
increase at time n is £(Y,,). Similarly, if the price goes down at n, it will go down at
time n + 1 with probability ¢ and will go up or stay the same with probability 1 — g.
The distribution of the price change at n + 1 given a price decrease at time n is L(Yy).

The objective of this paper is to determine a sequence of buying and selling times
that maximize the investor’s expected return from trading a commodity whose price
follows the walk Sy, given an investment time horizon N and transaction cost ¢ > 0.

That is, the goal is to find stopping times
0<m <7'2<"'<7'2mSN,

such that if the commodity is bought at times 75;_; and sold at times 7»;, then the
expected value of the total return

m

P(N) =" (Sry; = Sry;_,) — 2mc

j=1
is maximized, where m is possibly random. Note that the investor incurs a transaction
cost for each trade whether it is a buy or sell. Since the investor is required to sell the
commodity by time N if it is ever bought, each buy is paired with a sell.

Optimal trading strategies are developed for four basic cases of commodity price

behavior. The first is trivial: the price process is a supermartingale and the obvious

optimal strategy is never to buy. On the other hand, when the price process is a
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submartingale it is optimal to hold onto the commodity until the time horizon once the
commodity is purchased. It is just a question of whether to buy given the investment
time horizon. The third case considered is when the price is expected to decrease on
the next step if the price went up on the previous stage, and the price is expected to
increase if the price went down on the previous stage. The form of the optimal strategy
depends on the transaction costs for this case. Either the commodity is bought and
sold a single time according buy and sell signals; or, if costs are low enough, then it
is optimal to successively buy and sell according to the familiar investment axiom of
“buying on the dips and selling on the peaks.” The final case considered reverses the
commodity behavior and optimal strategies of the third case. Optimal strategies for
all cases are given in the next section.

The random walk model considered here is an immediate extension of the correlated
random walks introduced by Goldstein (1955). Basic properties of correlated random
walks such as transition probabilities and first passage times have been examined in a
number of papers. For instance, Seth (1963) gives return probabilities and first-passage
time distributions for symmetric correlated random walks. Jain (1971) generalizes these
results to the non-symmetric case. Renshaw and Henderson (1981) present occupation
probabilities and a diffusion approximation. Gillis (1955) developed a d-dimensional
version, and conjectured it to be transient for all d > 3. Gillis’ conjecture was proved
by Tossif (1986), and then for more general correlated random walks by Chen and
Renshaw (1994). Other results on correlated random walks and boundary problems
include Proudfoot and Lampard (1972), Jain (1973), Mukherjea and Steele (1987),
Zhang (1992) and Bohm (2000).

Gambler ruin type problems for correlated random walks are examined by Mohan
(1955) and Mukherjea and Steele (1986). Optimal buy/sell strategies are developed for
a more general class of processes called directionally reinforced random walks in Allaart
and Monticino (2001). Results given there are extended here by allowing random step
sizes and accounting for negative reinforcement addressed by the “buy on the dips and
sell on the peaks” strategies. Allaart (2003) examines the single stop problem of when
to sell a commodity whose price follows a correlated random walk in order to maximize
discounted return.

Other applications using correlated random walks include Goldstein (1951) where
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certain physical diffusion processes are modeled, and Henderson and Renshaw (1980)
in which tree root growth is examined. Renshaw and Henderson (1981) studied the
behavior of a certain kind of pinball machine. Mauldin et al. (1996) use the more
general directionally reinforced random walks as an elementary model of ocean surface
waves. A comprehensive list of references for correlated random walks is given in Chen

and Renshaw (1994).

The problem explored here is motivated by the popular notion among proponents of
stock market technical analysis that movements in security prices are not memoryless.
In particular, price changes - up or down - from one day to the next affect succeeding
day changes. Various assertions are given to justify this idea of price momentum, such
as fundamental information about a company ripples out from insiders to investment
professionals to individual investors. As this happens, the theory goes that the stock
price is pushed ever higher if the information is favorable, or lower if the news is bad. Of
course, it is far from agreed that the market consistently exhibits any behavior other
than a random walk about an underlying trend (see, for instance, Malkiel (1999)).
Regardless of one’s belief in this postulated market phenomena, very little seems to
be known about optimal stopping for processes exhibiting momentum. The intention
here is not to take a stand on the existence of price momentum in the market, but
to gain insight into how an investor might take advantage of momentum, if present,
by examining a simple model of such processes. Section 3 illustrates the strategies
developed through the behavior of a stock index fund. Using a model based on the
price history of the fund, simulation results are given that indicate the variation in
return possible using the theoretically optimal stop rules and compares this to simpler

buy-and-hold strategies.

2. Optimal Buy/Sell Strategies

This section presents optimal buy/sell strategies. As mentioned above, there are
four main cases that determine the form of the optimal strategy. Some necessary

notation is developed first.

Let E* := E[Y,] and E~ := E[Y,]. Define the total correlation by r := p+ q — 1,
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and the drift by
1-—qE"+(1-pE-
1—r '

Recall that each purchase of the commodity is paired with a sell. So without loss

0=

of generality assume that a single transaction cost C' representing total buying and
selling costs is (only) assessed when the commodity is bought.

For j € IN, let V5 () denote the optimal expected additional net gain when there
are j time periods remaining, the last increment was nonnegative, and after seeing
that increment a decision was made resulting in the commodity now being held. Let
Vi (j) denote the same, except that after the last decision moment the commodity
is not being held. Similarly, define V; (j) and V5 (j), replacing “nonnegative” with
“negative”. For convenience, define V5 (0) = V;(0) = V;7(0) = V- (0) = 0. The

following recursive relationships hold:

Vi (G +1) = BT + pmax{Vy (7), Vi ()} + (1 = p) max{V;; (§), V- ()}, (2.1)
Vi (5 +1) = pmax{Vy; (j) - C, V£ (i)} + (1 — p) max{V;; (j) = O,V ()}, (2:2)
Vi (G +1) = E~ + (1 = q)max{Vj; (j), Vi ()} + gmax{Vi; (j), Vy ()}, (2.3)
Ve (G +1) = (1 - @max{Vy (j) — C, V7 ()} + qmax{Vyz () = C,VE ()} (2.4)

The following lemma collects some elementary properties of the functions defined

above. The straightforward proofs are omitted.
Lemma 1. (a) Vi (5), Vi (5), V,
(b) ViH () > 0 and V7 (j) > 0 for all j.
(¢) If E* >0, then Vi (§) > VI (j) for all j. If E= >0, then Vi () > Vi (§) for

7 (7) and V7 (j) are all nondecreasing in j.

all 5.
(d) If EY <0, then Vi (j) — C < Vi (j) for all j. If E- <0, then Vi (j) — C <

Vi (4) for all j.
(e) If E* > E~, then Vi (j) > Vi (j) and Vi (§) > Vi (j) for all j. If E¥ < E~,

the reverse inequalities hold.
Next, define the differences
D™ (j) = Vi (4) = Vi (), D™(j) =V (§) = Vg (4),

Du(j) == Vg (7)) = Vi (5), Dr(§) == Vi () — Vi (4)-
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Observe that with j time periods remaining, it is optimal to buy after an up-step if
and only if D¥(j) > ¢, and after a down-step if and only if D~ (j) > c.

Lemma 2. (a) If EY > E—, then DT (j) > D~ (j) for all j > 0.
(b) If EY < E—, then DT (j) < D~ (j) for all j > 0.

Proof. Assume ET > E~. For j > 0, define
A(§) = max{Vyj (4), Vi (1)} — max{Viz (4), Viz (4)}
= max{Vyy (j) = C, Vi ()} + max{Vir (j) = C, Vi (4)}-
It will be shown inductively that, for all j € IN,
D*(j)>2D (), AG-1=>0. (2.5)
Since D*(1) =D~ (1) = E* — E~ and A(0) = 0, (2.5) holds for j = 1. Assume it holds
for j = k. Then, by (2.1)-(2.4),

DY (k+1)—=D (k+1)=Dg(k+1)—Dp(k+1) 26)
=E" —E™ +rA(k).
If Vi (k) — C >V, (k), then Vi (k) —C > V;F (k) by the induction hypothesis, and
A(k) = 0. Likewise, if V5 (k) < Vi (k), then V7 (k) < Vi (k) and again A(k) = 0. In
both cases, (2.5) clearly holds for j = k + 1. Assume, therefore, that

Vg (k) = C < Vg (k), and V;Ir(k) > V;F(k) (2.7)
Then
A(k) = min{D" (k),C} — max{D (k),0}. (2.8)

This, along with the induction hypothesis and (2.7) implies that A(k) > 0. If r > 0,
this immediately yields DT (k + 1) > D=(k + 1). If r < 0, then by (2.8) and the

induction hypothesis,

A(k)y< DY (k)—D (k)=E" —E~ +rA(k—-1) < Et - E". (2.9)

Since r > —1, substituting (2.9) into (2.6) yields that D*(k + 1) > D~ (k + 1). This
proves (a). The proof of (b) is analogous. O
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Theorem 1. If it is optimal to buy after an up-step (down-step) with j time periods
remaining, then it is optimal to buy after an up-step (down-step) with j+1 time periods
remaining.

Proof. Suppose D*(j) > C. By Lemma 1(d), this implies E* > 0. Thus, if Vj; (j) —
C > Vi (j), then (2.1) and (2.2) immediately yield that D*(j + 1) > C. Suppose,
therefore, that Vi (j) — C < Vi (j). By Lemma 2, this implies that E* > E~ and
hence, by Lemma 1(e), V;7(j) > V- (j). Now V£ (j + 1) > V7 (j), and

VG +1) =p{Vi () - C+ (1 - p)Vi (5)
<p{Vi(j) = CY+ (L= p)VF (§),
so that
DY (j+1) > (1 =p){Vi () = Vi ()} +pC > C.

This completes the proof for buying after an up-step. The proof for down-steps is

similar. O
The optimal buy/sell strategies are as follows.
Case . ET <0, E~ <0.

The price process, S, is a supermartingale in this case. Thus, the optimal strategy

is not to buy the commodity at all.

Case II. E* >0, E~ > 0.

In this case, the price process is a submartingale. Hence, once the commodity is
bought, it is optimal to hold it until the time horizon. The question is whether to
buy the commodity. Intuitively, the commodity should be bought only if there is
enough time between purchase and the time horizon for the positive drift of the walk
to generate an expected gain greater than the transaction cost.

In this case, (2.1) and (2.3) simplify to

Vir (G +1) =E" +pVy () + (1= p)Vg (1), (2.10)

V(G +1) =E" + 1=V (j) +aViz (). (2.11)
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Hence,

Du(j+1) =rDu(j) + (ET - E7), j>0.
Since Dy (0) = 0, it follows that

Et - E-

1—¢7 i > 0.
T A=), g2

Du(j) =

Substituting V7 () = Vi () — Du(j) into (2.10) and iterating gives
J
V() =Y {Et - (1-pDu(k-1)}, jeN.
k=1

Thus, after some manipulations,

(1-p)(E* —E7)
(1—7)2

Vi (j) =65 +

and

Vi (7) =05 -

There are two subcases.

Case II (a). E* > E~.

(2.12)

(2.13)

Let 57 be the smallest j for which DT (j) > C, and let j~ be the smallest j for which

D~(j) > C. Then j* < j~ by Lemma 2, and an easy induction argument shows that
VA () = Vp (§) =0 for all j < jT. Thus, j* is the smallest j such that Vi (j) > C.

Since § > 0, such a j exists by (2.12).
If V7 (j7) > C, then j~ = j*. Otherwise, let j© < j < j . Then

Ve (1 +1) = (1= {Vz () — C} + Vi (9),

so, by (2.3),

Since

it follows that for all j© < j < j—,

D () ={V;G)-b Yt +b, b= Tt C.

(2.14)
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Hence, j~ is the smallest j > j* such that {V;7(j*) — b~ }¢?=7" + b~ > C. Since
b~ > C, j is finite.

In summary, to determine whether to buy the commodity, first find j*, the smallest
j such that V§ (j) > C, using (2.12). Compute Vj; () using (2.13). Then use (2.14)
to find 57, the smallest 5 > jT such that D(j) > C. Now, with j time periods
remaining, it is optimal to buy after an up-step if and only if 5 > j*, and after a
down-step if and only if j > j~. Again, the commodity is held until the time horizon

if it is purchased.

Case II (b). Et < E~.
Here the order of j+ and j~ is reversed. First, find j—, the smallest j such that
Vi (j) > C, using (2.13). Compute V() using (2.12). Then use the formula

L +
DY) = (VG —b W b, bt

to find jT, the smallest j5 > j~ such that D™ (j) > C. Finally, use j© and 5~ as in
Case IT (a).

Case IIl. E* <0, E~ > 0.

This case and the next are the most interesting as the optimal strategies may involve
multiple trades in and out of the commodity. Some additional definitions are needed

before specifying the optimal strategies.

Define
. (1= q|EY
:= inf >1:1—¢’ > -— " —— 2.15
js :=in {J_ AT E (2.15)
where the infimum of an empty set is taken to be co. Let
1—=¢qJ
I =l J i+,
f70G) = , 1= pimie=l ] _ el
(G =do= Do +1(g" B™ =) —— + 7B > i+,

and define

jy=inf{i > 1 f () > C). (2.16)
It is not difficult to see that j, is finite if and only if § > 0. Similarly, j; is finite if and
onlyif 6 >0 or E~ > C(1 — q).
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Theorem 2. If Et <0, E~ > 0, then the optimal strategy is
(i) Never sell after a down-step;
(ii) Never buy after an up-step;
(11i) Buy after a down-step if and only if there are at least jp time periods remaining;
(iv) Sell after an up-step if and only if |EY| > C(1 —p) or the number of remaining

time periods is at most min(jy, js).

Proof. Parts (i) and (ii) of the optimal strategy follow directly from (c) and (d) of
Lemma 1, respectively. To prove parts (iii) and (iv), let j* be the smallest value of
j (possibly infinite) such that D~(j) > C. Since Vi (j) = Vi (§) = 0 for j < j*, it
follows that j* is in fact the smallest j such that V,; (j) > C. It will now be shown

that j* = j5. There are again two subcases:

Case III (a). |E*| > C(1 - p).
In this case,
Vi) < Vi)  forall j. (2.17)

This follows by a routine induction argument. In particular, Vg(l) = E* <0 =
V(1) If Vi () < Vi (4) for some j, then, since Vi; (§) > Vi (),

Vir (G +1) =pViE () + 1 =p)Vig (§) + B,

Vi (G +1) 2 pViE () + (L= p){Viz () - C}, (2.18)
so that

V(G +1) = VE(G+1) <EY+(1-p)C <O

By (2.17), it is always optimal to sell after an up-step. Hence part (iv) of the optimal
strategy follows for the case |E*| > C'(1 — p).
Next, (2.17) implies that for k£ < j*,

Vi(k+1)=E" +(1—qVi(k)+qVy (k) = E™ +qVy (k). (2.19)
Hence, ‘
. 1—¢’ C
VH(J)Zl_qE . 1< <, (2:20)

and it follows that



Buy/sell strategies 11

Since |E*| > C(1 — p), (2.21) and (2.15) imply that j* < j;. Hence, by (2.16) and the
definition of f~(j), j* = jp». This establishes part (iii) of the optimal strategy in the
case [ET| > C(1 - p).

Case III (b). |[ET < C(1 —p).
If j > j*, equality holds in (2.18), so that

ViG+1)=Vi(G+1)>ET+C(1—p)>0. (2.22)

Thus, if the commodity is being held after an up-step with more than j* time periods
remaining, it is optimal to hold it for at least one more time period.

Next, let j < j* be fixed, and suppose that V5 (k) <0 for k =1,...,j. Then
Vii(G+1) = ET + (1 = p)Vy; ().

Since j < j*, (2.19) holds for £ = 0,1,...,j. Hence, Vj; (j) is given by (2.20), so the

following equivalences hold:
Vi(G+1D) 20 <= Vi()2|BN/(1-p <= j>js (2:23)

If j* < js, then (2.23) implies that V, (j) < 0 for all j < j*, which means that
(2.20) holds for all j < j*. Hence,

1—¢qJ
j*:inf{j: q E‘ZC}:jb.
1-g¢

If j* > js, then (2.20) holds for 1 < j < js + 1. However, (2.23) shows that with
Jjs + 1 or more time periods remaining it is no longer optimal to sell after an up-step,
so that the calculation of Vi (j) is different when j > j; + 1. In fact, for j; < j < j*,
Vi (j) and Vj7 (§) satisfy the difference equations (2.10) and (2.11), but with different
initial conditions. Specifically,

1 —gistt

V(s +1) = E-  (by (2.20)),

1-gq

and

Vi (s +1) = ET + pViF (4s) + (1 = p)Viz (4s)

1 — gJs
= -

=Et+(1-
+(1-p) 4
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(again by (2.20) and the fact that V;I (j5) = 0, since j; < j*). Define
D(k) := Df;(k + js + 1), k=0,1,2,....

Then D(k) =rD(k—1)+ (E* —E~) for k=1,2,...,j* — js — 1, and hence,

1— k
r k=1,2,...,5% —js— 1, (2.24)

D(k) =r*D(0) + (ET — E7) — .2,

where

D(0) = Vi (js + 1) = Vi (js + 1)

1—¢% _ 1—¢ghstt __
=ET4+(1- -
+( p)l_q 4 (2.25)
jS p—
—pt+ L —Pp-
1-g¢q
Now substituting V;F (j) = V7 (j) + D(j — js — 1) into (2.11) gives
Tterating this recursive relationship yields, for j = js +2,..., 5%,
J—js—1
V() =V ([Us +1) + Z {E~ 4+ (1 -¢)D(k-1)}. (2.26)

After straightforward calculations using (2.24), (2.25) and the definitions of r and ¢,
(2.26) reduces to

1 _rjfjsfl 1 _qjs+1

Vir () = (G = s = Do+ 1(q" B = 6)— — —

Thus, for all j < j*, V; () = f7(j), and it follows that j* = j,, which proves part
(iii) of the optimal strategy. Part (iv) follows from the comment following (2.22) and
the equivalences (2.23) (which hold for j < j*). O

Case IV. E* >0, E~ <0.

This case is a mirror image of Case III, and can be treated in the same way. The
optimal strategy is stated formally in the next theorem.
Analogous to Case III, define

A o 1=p)IE]
= > : —_p) >/ .
Js 1nf{]_1 1-p' > =B+



Buy/sell strategies 13

Let

L

1—p7E_7 ijs+17
f+(J) = ) p — 1—pi—ds=l 1 —pistl L ]

(G —ds =1 +r(p" ET = 0)—F— T ET, j>js+1,
and define

jo :=inf{j > 1: f*(j) > C}.

Theorem 3. If E* > 0, E~ <0, then the optimal strategy is
(i) Never sell after an up-step;
(7i) Never buy after a down-step;
(11i) Buy after an up-step if and only if there are at least j, time periods remaining;
(iv) Sell after a down-step if and only if |E~| > C(1—q) or the number of remaining

time periods is at most min(jy, Js)-

3. Example of Return Variance

This section presents simulation results to illustrate the variance in return possible
when applying optimal trading strategies. Some questions for further study are also
mentioned after the simulation results. Simulations are based on data from a mutual
fund that tracks the common stock performance of the 1,000 largest publicly traded
U.S. companies - the Schwab 1000 Index fund (SNXFX). The intention is not to
advocate that this fund or any commodity necessarily obeys a random walk with
correlation. Rather, the example provides a guide to what sort of return variance could
be expected if the trading strategies were applied under the RWC assumption. Since
the exact distribution on return is difficult to compute even for simple distributions of
Y, and Yy, simulation is used in the examples given here.

The RWC model used in the simulations is based on the daily closing price of the
SNXFX fund from June 1, 2004 to May 31, 2005 (Figure 1). To gain a sense of whether
a random walk with correlation model is at all a reasonable representation of the data,
a standard statistical test (see Anderson and Goodman (1957)) was performed to
evaluate the hypothesis that the price movement of the fund - up or down - from one
day to the next is independent of the previous day’s movement. For the 252 trading

days in the data set, the (chi-square) test had a .0387 level of significance, indicating
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FIGURE 1: Daily closing price of Schwab 1000 Index fund from June 1, 2004 through May 31,
2005.

that the independence model could be rejected. Of course, the test does not indicate
whether models other than a RWC model may provide better explanations for the
data. Figures 2 and 3 show the histograms on the price change of the fund given
the previous day’s price went up or down, respectively. The figures also show a fitted
normal density. A standard t-test yields that the hypothesis that the means of the two
distributions are equal can be rejected at a (two-tail) significance level of .00035. In
the simulation, it was assumed that for any trade — buying or selling — 1000 shares were
traded. So, motivated by the data, an RWC model with Y, ~ N(—17,220), p = .469,
Yy ~ N(45,230), and g = .422 was used.

The optimal strategy given by Theorem 2 was applied over a time horizon of N = 65,
corresponding to the sixty-five NYSE trading days June 1, 2005 through August 31,
2005. Figure 4 shows the distribution on return for the strategy of buying 1000 shares
of the fund on the first day and then holding it until it is sold at the time horizon, with
no transaction costs. The distribution can be shifted to the left by C' to account for
transaction costs. For the assumed distributions on Y, and Yy, the optimal strategy

will buy after a down step and sell after an up step whenever the transaction costs,
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Frequency
1
|
P

Mean = -0.0171
Std. Dev. = 0.22036
N=146
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FIGURE 2: Histogram of price changes given price went up previous day for Schwab 1000

Index fund (June 1, 2004 - May 31, 2005).
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Mean = 0.0455
Std. Dev. = 0.2297
'\ N =106
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FIGURE 3: Histogram of price changes given price went down previous day for Schwab 1000

Index fund (June 1, 2-4 - May 31, 2005).

C, are below 32. For C' < 32, j, = js = 1. Simulations (100,000 Monte Carlo points

and the walk assumed to have taken a down step at time 0) were performed for several
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values of C' < 32. For C' = 0, the average return for the buy-and-hold strategy was 854
with a standard deviation of 1634 while the average return for the optimal strategy was
1382 with a standard deviation of 1186. Moreover, for this case, the optimal strategy
outperformed buy-and-hold more than 65% of the time. While the optimal strategy
significantly improves upon the average return observed for the buy-and-hold strategy,
both strategies have fairly large deviations in return. For C' = 10, the average return
for the optimal strategy was 1203 with a standard deviation of 1176; for C = 20, the
average return was 1021 with a standard deviation of 1167; and, for C' = 30, the average
return was 845 with a standard deviation of 1154. The examples indicate that, as
transaction costs increase, the average performances of the buy-and-hold and optimal
strategies become similar. Moreover, the buy-and-hold strategy becomes nearly as
likely to outperform the optimal strategy as the optimal strategy is to outperform the
buy-and-hold strategy — the 50" percentile of the difference between optimal strategy
and buy-and-hold return is approximately 56 when C' = 30 (Figure 5). It is a bit
surprising that the standard deviation in return was lower for the more aggressive
optimal strategies than for the buy-and-hold strategies, for all the cases considered. It
is also interesting to note the return of the optimal strategy when applied to the actual
performance of the fund SNXFX. For C' = 0, the return from the optimal strategy
would have been 1510 compared to 860 for the buy-and-hold strategy — actual returns
for both strategies are relatively close to the average returns in the simulations. For
C = 10, the return from the optimal strategy would have been 1320 (fund was bought
and sold nineteen times), again close to the average simulation return. Similarly, for
C = 20 and C = 30, the return from the optimal strategy would have been 1130 and
940, respectively.

There are several natural further questions to pursue:

e Many commodity funds place a limit on the number of trades that can occur
within a given time. What are optimal strategies given a bound on the number

of trades?

e How does a (tax) penalty for rapid buying and selling affect the form of the
optimal trading strategy?

e What is the optimal strategy if there is a (dividend) reward for holding the
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commodity at certain times?
e The simulations suggest that the variance in return of the optimal strategy is
smaller than for buy-and-hold strategies. Is this true in general?

e The optimal strategies given here assume that the same number of units of the
commodity are bought and sold each time. What is the optimal strategy when

the number of units traded is allowed to vary?
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FIGURE 4: Distribution of return for the buy-and-hold strategy for C = 0 and N = 65 (100,000

Monte Carlo points). Mean return was 854 with standard deviation of 1634.
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FIGURE 5: Distribution of the difference in return from following optimal strategy and
following buy-and-hold strategy, for C = 30 and N = 65 (10,000 Monte Carlo points). Median

is 56 and mean is 22.
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