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Bounds on the Non-convexity of Ranges
of Vector Measures with Atoms

Pieter C. Allaart

ABSTRACT. Upper bounds are given for the distance between the range, matrix
range and partition range of a vector measure to the respective convex hulls
of these ranges. The bounds are specified in terms of the maximum atom size,
and generalize convexity results of Lyapounov (1940) and Dvoretzky, Wald
and Wolfowitz (1951). Applications are given to the bisection problem, the
”problem of the Nile”, and fair division problems.

1. Introduction

Lyapounov’s celebrated convexity theorem of 1940 (e.g. [3, 10, 14, 15]) as-
serts that the range of a finite-dimensional, atomless vector measure is convex and
compact. A generalization of Lyapounov’s theorem due to Dvoretzky, Wald and
Wolfowitz [6] says that the same is true for the matriz-k-range and the partition
range (see Definition 2.2 below).

If the vector measure has atoms, then convexity of all three ranges may fail
in general, although atomlessness is not a necessary condition. Gouweleeuw [9]
has given necessary and sufficient conditions for the range (or matrix-k-range) to
be convex, as well as non-trivial sufficient conditions for the partition range to be
convex.

A different approach was adopted by Elton and Hill [7], who proved a bound
on how far from convex the range may be, as a function of the maximum atom size.
The aim of this paper is to present such non-convexity inequalities for the three
types of ranges mentioned above. Some of these are sharp, whereas in other cases
the best possible bounds are not known to the author.

The first result is a slightly improved, but sharp, version of Elton and Hill’s
inequality. The proof presented here is very similar to that of Elton and Hill, with
only a few minor adaptations. The original inequality is also included for the sake
of comparison.

Next in line are two non-convexity inequalities for the matrix-k-range. These
are proved using the improved inequality for the range, and a device of chaining
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together vector measures due to Blackwell. It is, however, the author’s belief that
these inequalities are not very sharp.

The last result is a sharp non-convexity bound for the partition range. Its proof
(see [1]) is beyond the scope of this paper and is therefore omitted.

This paper is organized as follows. Section 2 lists the main results described
above, accompanied by examples demonstrating their sharpness when applicable.
Section 3 contains the necessary preparations for the proofs of the range and matrix-
k-range inequalities, which then follow in Section 4. Section 5 gives applications of
the main results to some well-known partitioning problems, including the bisection
problem, the ”problem of the Nile” and the problem of fair division. Section 6,
finally, lists two open problems.

2. Non-convexity inequalities

Throughout this paper, u, u1,--. ,u, will always denote finite, non-negative,
countably additive measures on a fixed measurable space ({2, F). The vector mea-
sure ji = (p1,... ,n) is defined by

fi(A) = (p(A), ... ,un(4)) €R", A€ F.

A set E € F is called a (scalar) atom of p if u(E) > 0 and for each FF C E,F € F :
w(F) € {0,u(E)}. Similarly, E is a vector atom of i = (juy,... ,pun) if f(E) #0
and for each F C E,F € F : ji(F) = ji(E) or ji(F) = 0. A (vector) measure is
atomless if it does not have any atoms. A measure (resp. vector measure) is purely
atomic if is assigns mass 0 (resp. 6) to the complement of the union of its atoms.

REMARK 2.1. From the definition of vector atom it can be seen that if F is a
vector atom of ji, then
(i) E is a scalar atom of at least one p;;
(ii) for each i € {1,...,n}, either E is an atom of u;, or u;(E) = 0.
Conversely, it follows from Lemma 2.4 (iii) in [9] that if E is a scalar atom of p;
for some ¢, then E contains a vector atom F' of i with [i(F) = [i(E).
As a consequence, a vector measure is purely atomic if and only if all its com-
ponent measures are.

A (measurable) k-partition is an ordered collection (Ay, ..., Ay) of subsets of
Qsuch that A4; € F (i=1,... ,k),A;NA; =0 forall i # j, and UleAi = . Let
I}, denote the collection of all k-partitions of 2.

In the following definition, M, (R) denotes the vector space of all nx k matrices
with real entries.

DEFINITION 2.2. For a vector measure i = (u1,... ,ln),
(i) R(i) :={ii(A) : A€ F} C R" is the range of fi.
(i) MRy(jE) == {(ui (A8 o1t (A1, ..., Ap) € T} C Mk (R) is the matriz-

k-range of [i.
(iil) PR(E) := {(p1(A1), ... ypun(Apn)) : (A1,...,Ay) € II,} CR™ is the partition
range of ji.

PROPOSITION 2.3. [Lyapounov (1940)]. R(f) is compact, and if [i is atomless,
then R(fZ) is convez.
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PROPOSITION 2.4. [Dvoretzky, Wald and Wolfowitz (1951)]. If i is atomless,
then MRy (f) is convex and compact.

Proposition 2.4 was later improved by Dubins and Spanier [5], who proved that
MR () is always compact.
A direct consequence of Proposition 2.4 is the following;:

PROPOSITION 2.5. If i is atomless, then PR({) is convex and compact.

The main goal of this paper is to generalize the above convexity results to
measures with atoms, as was first done by Elton and Hill (1987). In order to do so,
the following notation is needed. Recall that for a vector z € R, the p-norm ||z||,
of = is defined by

1/p .
o], = 4 (i l@il?) 7 if 1< p <oo,
maxi<i<n |Zi| if p = oo.

Note that the norms (||.||,,p € [1,00]) are related via the sharp inequalities

(2.1) lzlly < llzll, and /7|2l < n”'9|j2]], for p < q < oo,
and
(2.2) [2]loo < [|2]lp < n'/P[l2]|o  for p < oo.

(See, for example, Theorems 16 and 19 in [11]).
By identifying M,, x(R) with R** the norm ||.||, can be naturally extended to
My, 1 (R) as follows:

(S i Jaeg 1) 1< p <o,
||(ai7j)i:1,j:1||p = B = .
maxi<i<n,1<j<k [aij| if p=oo.

If z and y are points in R”, then d,(z,y) = ||z — y||, denotes the distance
between ¢ and y. For a set S in R" and a point  in R?, dp(z, S) = infyes dp(z,y)
is the distance from z to S, and D,(S) denotes the Hausdorff distance from S to
its convex hull co(S):

D,(S):= sup dp(z,S).
z€co(S)
For My, 1 (R), the distances d, and D, are defined similarly.

DEFINITION 2.6. For @ > 0 and p € [1,00], Ppp() is the collection of all
n-dimensional vector measures i for which ||i(E)||, < a for each atom E of .

The following theorem generalizes the convexity statement of Proposition 2.3.
A proof is given in Section 4 below.

THEOREM 2.7. Let ji be a vector measure, and let 1 < p < 2.
(i) If i € Pp,co(), then D2(R(ii)) < an/2.
(i1) If i € Ppp(a), then Dp(R(fZ)) < %oml/p.
The bound in (i) is attained for all p € [1,2]. The bound in (i) is of the correct
order of magnitude in n.

Theorem 2.7 (i) is the original generalization of Lyapounov’s theorem by Elton
and Hill. Note that (ii) implies (i), as follows easily by substituting p = 2 in (ii),
and using (2.2). As a consequence, Elton and Hill’s inequality holds under more
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general conditions, namely whenever ||i(E)||2 < ay/n for each vector atom E of ji.
The following example shows that the bound in (ii) is attained for all p € [1,2].

EXAMPLE 2.8. Let pu; = adgy, @ = 1,...,n, where § denotes Dirac mea-
sure. Then R(ii) = {0,a}™ and hence co( (i )) = [0,a]”. In particular, y =
(a/2,...,a/2) € co(R(ji)), and for each z € R(fi), ||z — y||, = an'/P.

Elton and Hill give the following example to show that the bound in Theorem
2.7 (i) is of the correct order of magnitude in n.

EXAMPLE 2.9. Fix n € N, let m = 2% < n < 28! and let {w;}"]"' be the
m — 1 mean-zero Walsh functions on m points (see [18]). Then w; € {-1,1}™,
w; Lw; for i # j, and w; LT for each i, where T = (1,1,...,1). For example, when
n =4 (sok=2and m=4),
wy = (1,1,-1,-1), ws =(1,-1,1,-1), and ws=(1,—1,—1,1).

Let @ = {1,2,...,m — 1}, and define 7({j}) = (w; +1)/2, j = 1,...,m — 1.
Let y = @()/2 = id(0)/2 + i(Q)/2 € co(R(ji)). It can be shown (see [7]) that
da(z,y) > m/4 for each z € R(fZ).

Since 2m = 2*¥+1 > n, it follows by rescaling that the best possible upper bound
in Theorem 2.7 (i) is at least an/8 for general n, and at least an/4 if n is a power
of 2.

The next example shows that the statement of Theorem 2.7 (ii) is false for
p > 2 and large n. No non-trivial inequalities are known to the author for p > 2.
EXAMPLE 2.10. Let m = 2% < n < 28! and let ji be the same vector measure

as in Example 2.9. Then |5 ({j})ll, = (2)"7 for each j, s0 i € Pony((2)"77).
From Example 2.9 it follows that D2 (R( *)) > m/4, hence using (2.1) it follows
that D,(R(Z)) > m'/Pm~1?m/4 = ml/pm1/2/4 Since 1/p < 1/2 it follows that

D,(R({)) > %(?)1/1) /P for sufficiently large m.

The following theorem gives upper bounds on the non-convexity of the matrix-
k-range. Its proof is given in Section 4 below.
THEOREM 2.11. Let ji be a vector measure and let k € N.
(i) If [i € Pn,oo(), then Dy( MRy (7)) < anv/2k.
(i) If fi € Pn2(c), then Do(MRy (D)) < av2nk.

The next theorem gives a sharp non-convexity bound for the partition range.
Its proof can be found in [1].

THEOREM 2.12. If i € Py oo(a), then

n—1

Doo(PR(f1)) <

Q,
n

and this bound is attained.

EXAMPLE 2.13. (sharpness of Theorem 2.12) Let p; = adgpy,i = 1,...,n
Then PR(ji) = {au; : i = 1,...,n}, where u; denotes the i—th unit vector in
R"™ with 1 in the 1—th position and zeroes elsewhere. It follows that co(PR(ii)) =
{z e R: : Y"1, ; = a}. In particular, y = (a/n,...,a/n) € co(PR(i)), and for
each © € PR(), ||z — ylloo = a(n —1)/n.
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The following immediate consequence of Theorem 2.12 improves on an earlier
result of Hill and Tong ([12], Theorem 3.2).

COROLLARY 2.14. If i € Py oo(a), then

n—1
NG
ExAMPLE 2.15. The bound in Corollary 2.14 is of the correct order of magni-
tude in n: let pu; = adgy,i = 1,...,n; then PR(ji) = {0,a}", hence co(PR(ji)) =
[0,a]™. In particular, y = («/2,...,a/2) € co(PR()), and for each z € PR(f),
|z = yll2 = a/n/2.

Dy (PR(f)) < a.

3. Preliminaries

The goal of this section and the next is to prove Theorems 2.7 and 2.11. For a
proof of Theorem 2.12 the reader is referred to [1].

Most of the definitions and lemmas in this section are taken from Elton and
Hill [7]. However, some of the statements are slightly more general than the corre-
sponding statements in [7]. Most of the proofs are short, and are included here in
order to make this paper more self-contained.

LEMMA 3.1. For each fi, each € > 0 and each q € [1,00], there exists a mea-
surable partition {B;}N., of Q satisfying

(3.1) VB e F,3I C{l,...,N}: |ii(B) — ji(| ) B)ll, <e.
jeJ

PROOF. Since R(i) is bounded, there is an e-net {z(1),... 2™} of R(ji);
that is {z(M, ..., 2™} C R(ji), and for each = € R(ji) there is an i < m such that
|z —2®]||, <e. Let {4;}, satisfy ji(4;) =z, i =1,...,m, and let {B;}N, C F
be a measurable partition of Q such that o(Bi,...,By) = 0(41,...,4n). (Such
a partition exists because o(Ay,..., A,;,) is finite.) It is easily seen that {B;}},
satisfies (3.1). O

The next lemma is stated and proved in [7] for p = oo only; the more general
statement below requires a different proof. It will be used in the next section for
p=2.

LEMMA 3.2. For each p € [1,00), each fi € Py p(a) and each B € F there
exists a measurable partition {B;}¥_, of B such that ||ii(B;)||, < a for all i < k.

PROOF. Let B € F. By Rényi [17], p.83, each u; has at most countably many
atoms, hence ji has at most countably many vector atoms. Let A be the union of
all the vector atoms of ji. Then A € F. Since u is atomless on B\ A, there is
a measurable partition (C;)%_, of B\A such that pu(C;) < an /P for all j <1
(where 1/00 = 0). Repeating this argument for p» and each Cj, then for ps, etc.,
yields a partition (D;)_, of B\A such that u;(D;) < an~ /P for all i < n and
j < L, which implies ||F(D;)||, < « for all j < L.

The argument for B N A is slightly different. If the number of vector atoms
of /i is finite, then there is nothing left to prove. Otherwise, let the atoms of ji be
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Ey, E,,... Since

S IAED < S IAE = 323 mlEr) = 3 3 mlEr) = 32 i) < o,

j=1i=1 i=1 j=1

there is jo € N such that

[ee] o0
il U B < X liEl <o
Jj=jo+1 Jj=jo+1
P
Taking intersections of the sets Ey, ..., Ej, and U;’ijo_i_l E; with B completes the
proof. O

LEMMA 3.3. For all p,q € [1,00],e > 0 and i € Ppp(a), there is a purely
atomic vector measure jig € Py, () with finitely many atoms, such that

Dy(R(ii)) < Dy(R(fio)) + e

The idea of the proof of Lemma 3.3 is that Lemma 3.1 and a repeated ap-
plication of Lemma 3.2 yield a partition {B;}Y, of Q satisfying both (3.1) and
lZ(B;)|lp < a for all i < N. The restriction jig of i to o(By, ..., By) then has the
desired property. (See [7], §3 for the details).

Lemma 3.3 says that it is in fact sufficient to prove Theorem 2.7 for purely
atomic measures with a finite number of atoms. Since the range of such a vector
measure is a finite set, this reduction turns the problem into one of finite geometry.

For the remainder of this section, V' is a finite set of (not necessarily distinct)
points in R} = {(r1,...,rn) : 73 € Ryr; > 0 for all i < n}, and |[V] denotes the
cardinality of V.

DEFINITION 3.4.
(V) = { > Gimizdi € {0,1}}; cw) = { > tiwicti € [0,1]}.
z; €V z; €V
LEMMA 3.5. co(E(V)) = C(V).

The next lemma states that C (V) can be expressed as the union of translates
of subsets of the form C'(V') where |V| < n. Let the vector sum V; @ V5 of two sets
V1 and V, be defined by Vi @ Vo = {v; + vy : 01 € V1,05 € Vo).

LEMMA 3.6. C(V) = {E(V\V) e C(V):V C V,|V| < n}.

A direct algebraic proof of Lemma 3.6 can be found in [7]. Here a different
proof is given, based on the Shapley-Folkman lemma from convex geometry.

LEMMA 3.7. (Shapley and Folkman - see [2], §5) Let Vi,..., V) be nonempty
subsets of R". Then for each y € co(V1)@®---®co(Vy) there exists a representation
y=a1 + -+ xyp, with z; € co(V;) for all i, but x; ¢ V; for at most n indices i.

LEMMA 3.8. co(®F Vi) = ®F | co(Vi) for all Vi,...,Vj.
PrROOF. Straightforward. O
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PROOF OF LEMMA 3.6. Clearly C(V) > U{S(V\V) @ C(V) : V C V,|V]| <
n}. Conversely, let xy,...,x; denote the elements of V' (counting multiplicities),
and let V; := {0,7;}. Then %(V) = @k ,V;, and (using Lemma 3.8) C(V) =
co(2(V)) = ®%_, co(Vi). Now fix y € C(V); then by Lemma 3.7 there is a rep-
resentation y = Zle yi, where y; € co(V;) for all i, and y; ¢ V; for at most n
indices . Let I := {i:y; ¢ V;}, and define V := {x;}ics. It is easily checked that
yeS(V\V)@® V). O

The next lemma is critical for the proof of Theorem 2.7. Its proof is taken from
[7].

LEMMA 3.9. For all z,y € R" and all t € [0, 1],
min{|lz + (1 = )ylf3, [l — tyl13} <[]l + llyl5/4-

PROOF. Let (z,y) = > | ;y; denote the standard inner product on R™. First
consider the case where 2(x,y) > (> — (1 — t)?)||y||3. Then

lz = tyll3 = llzll3 + ¢[lyll3 — 2t(z, )
< lalf + 2 llyll3 — ¢ — (1 = 1)*)llyll3
= llzll3 +t(1 = t)llyll3 < llzlI3 + [lylI3/4-
The case where 2(z,y) < (t2 — (1 — t)?)]|y||3 is similar, yielding ||z + (1 — t)y||3 <
213 + [lyl5/4- 0
LEMMA 3.10. Let [V =mn. If ||yl <1 for all y € V, then D2(X(V)) < +/n/2.
PROOF. Let V = {z1,...,z,} and fix z = Y. | t;z; € C(V). Applying Lemma

3.9 n times implies the existence of (6;)1; € {0,1}" satisfying

n
E 5le — X
i=1

2 2

n

Z(@‘ — ti)wi

i=1

<n-max{|lyll3 :y € V}/4 < n/4.

2 2

4. Proofs of the range and matrix range inequalities

PRrOOF OF THEOREM 2.7. Since (ii) implies (i), it is enough to prove (ii). Note
first that if (ii) holds for p = 2, then it holds for each p € [1,2]. For, suppose that
fi € Ppp(a); then also ji € P, »(a) in view of (2.1), so Do(R (7)) < an'/?, and a
second application of (2.1) yields D,(R(ji)) < 2an'/?.

It is therefore sufficient to prove (ii) for p = 2. Let € > 0 and g € P, 2(a). By
Lemma 3.3 there exists a purely atomic vector measure jip € Py 2(a) with finitely
many atoms such that

(4.1) D> (R(ji)) < D2(R(jio) +&.

Now R(iip) = X(V), where V = {jip(E) : E is a vector atom of fip}, so applying
Lemma 3.6, Lemma 3.10 and rescaling yields

D»(R(fio) < av/n/2,
which together with (4.1) completes the proof of (ii), since € was arbitrary. O
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ProOF OF THEOREM 2.11. Since (ii) implies (i), it suffices to prove (ii). Fix
(A1,...,A) and (By,...,By) in II, and ¢ € [0, 1]. Following Dubins and Spanier
[5], define the 2nk-dimensional vector measure 17 by

(S) = (i(S N A;), (SN By oy

Note that m and i have the same vector atoms. If E is a vector atom of 1, then,
since distinct vector atoms are essentially disjoint, it can be assumed that £ C A;,
and E C By, for some j; and j,. Hence ENA; =0 for all j # j; and ENB; =0
for all j # ja, so

(B = 2lAE)3 < 20
Applying Theorem 2.7 (ii) to 77 now yields Do(R(11) < av/2-v2nk/2 = av/nk, so
there exists a set S € F with ||mi(S) — tT?L(Q)||2 < av/nk, that is,

n

ZZMZSI’WA —tu;(A +ZZMS’F‘|B —tu;(B;))? < a’nk.

i=1 j=1 i=1 j=1
Since | (S N Bj) — tpi(B;) |=| pi(B;\S) — (1 — t)p;(By) |, it follows from (4.2)
that
(4. 3)

n k
ZZMZSHA — tpi(A ZZV%B\S (1 - H)pi(By))* < a’nk.

i=1 j=1

Letting C; = (4, N S) U (B;\S) it follows from (4.3) that

n k
(44) D7D ((Cy) — tus(Ay) = (1= H)a(By))*
n k
:ZZ(M(A;'05)+ui(3j\5)—tui(Aj)—(l—t)ui(Bj))2

=M +N-P-Ql; <2(IM = Pl + [IN = QIl3) < 2a”nk,

where the matrlces M,N,P and @ are defined in the obvious manner, i.e. M =
(ni(4; N S))Z 1,j=1, etc. Taking square roots on both sides of (4.4) completes the
proof of (ii). O

REMARK 4.1. The device of chaining together vector measures was introduced
by Blackwell [4]. It was used by Dubins and Spanier [5] to derive convexity of the
matrix range from Lyapounov’s theorem in the atomless case, and by Hill and Tong
[12] to obtain a non-convexity bound for the partition range from Theorem 2.7 (i).
However, the inequality presented in Theorem 2.12 is much stronger than Hill and
Tong’s result. It is therefore the author’s belief that sharper inequalities than those
presented in Theorem 2.11 can be found.

5. Applications

Lyapounov’s theorem has been applied in a number of areas including optimal
stopping theory, control theory and statistical decision theory. In principle, any
application of Propositions 2.3, 2.4 or 2.5 can be generalized to measures with
atoms using the corresponding generalization from Section 2. The aim of this
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section is to illustrate this by a few examples, including the bisection problem, the
”problem of the Nile” and the problem of fair division.

1. The objective in the bisection problem is to find a set A € F such that
pi(A) = 1pi(Q) for all i. If pi,... ,u, are atomless, then the existence of such a
set is a direct consequence of Proposition 2.3. The following theorem generalizes
this result to measures with atoms:

THEOREM 5.1. If ||Z(E)||2 < a for every vector atom E of [i, then there ezists
a set A € F satisfying

1
| 1i(A) = 5pa(Q) [< avn/2 for all i <n.
ProorF. Since (0,...,0) = @(0) € R(jii) and (u1(Q),...,u.(Q) = A(Q) €
R (i), it follows that co(R(ji)) contains the vector (1u1(Q),...,1u,(). Apply

Theorem 2.7 (ii). O

An approximate bisection result based on Theorem 2.7 (i) can, of course, be
stated and proved analogously.

For an application of Theorem 2.7 to the bang-bang principle of control theory,
see Elton and Hill [7].

2. Fisher’s "problem of the Nile” (see Dubins and Spanier [5]). ”Each year the
Nile would flood, thereby irrigating or perhaps devastating parts of the agricultural
land of a predynastic Egyptian village. The value of different portions of the land
would depend upon the height of the flood. In question was the possibility of giving
to each of the k residents a piece of land whose value would be 1/k of the total land
value no matter what the height of the flood.”

Neyman [16] proved that the problem has a solution under the assumption
that there are only a finite number, say n, of possible flood heights. The following
theorem generalizes Neyman’s result.

THEOREM 5.2. If i1, ... , ptn are probability measures and ||i(E)||2 < « for ev-
ery vector atom E of i = (p1,. .. , pn), then there exists a k-partition (Aq, ..., Ay)
of Q such that

1
| pi(Aj) — z |< av2nk foralli<mn and j <k.
PROOF. For r = 1,... ,k, let (Ag-r))f:l be the partition with Ay) = Q and
(") g s
A} =0if j #r. Then
My = (ua( A7) oy € MR ()

i=1,j=1
forr=1,...,k. Note that M, is the matrix with only 1’s in the r-th column and
0’s elsewhere. It follows that £ My + ...+ My € co(MR(fi)). Applying Theorem
2.11 (ii) gives the desired result. O

3. In the classical fair division problem the objective is to find a partition
(Ag,...,Ap) of Q such that

(5.1) ui(A;) > — forall i <,

S|
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where 1, ... , i, are probability measures. If yq, ... , u, are atomless, then Propo-
sition 2.5 guarantees the existence of such a partition, even with equality in (5.1).
If, in addition, p; # p; for some i # j, then there is a partition for which (5.1)
holds with strict inequality (see for example Dubins and Spanier [5]).

If the measures have atoms then in general a partition satisfying (5.1) need
not exist. However, if the measures are not all equal and the atoms are sufficiently
small, then the differentiation between the measures may compensate for the non-
divisibility of the atoms, making fair division still possible. To make this more
precise, let

n
M = sup{z wi(B;) | (B;)i, is a partition of }.
i=1

The following theorem generalizes a result of Elton, Hill and Kertz [8].

THEOREM 5.3. If ||i(E)||lco < a for every vector atom E of [i, then there ezists

a partition (Ai,...,A,) of Q such that

n—1

pi(A)) > (n—M+1)"1 - a, i=1,...,n.
PROOF. As in Legut [13], applying Theorem 2.12 at the place where [13] uses
convexity of the partition range. O

COROLLARY 5.4. If||i(E)|lsc < (M —1)(n—1)"Y(n—M+1)~" for every vector
atom E of [i, then there is a partition (Ay,...,A,) of Q satisfying (5.1).

ExaMPLE 5.5. Let n = 3 and suppose that M = 2 (note that 2 is a realistic
value in this case, since M can assume any value between 1 and 3). If [|i(E)|| < 1
for every vector atom E of fi, then Corollary 5.4 implies the existence of a fair
division in the sense of (5.1).

6. Open Problems

ProBLEM 1. Find a non-convexity inequality analogous to Theorem 2.7 (ii)
for p = oo; in other words, find the best possible (or at least a good) constant
K(n,a) such that if @ € Pp o0(c), then Do (R(ii)) < K(n,«). An example of the
significance of such a sharp bound is that it would yield the best possible upper
bound in Theorem 5.1. Note that by Example 2.9, the order of magnitude of
K (n,a) must be at least \/n.

PROBLEM 2. Find a sharp non-convexity inequality for the matrix-k-range.
The inequalities given in Theorem 2.11 are probably far from sharp, as was already
pointed out in Remark 4.1. In fact, no examples are known to the author of
vector measures i for which Dy(MR(f)) is unbounded in k. Is there an upper
bound for the non-convexity of MRy (i) that does not depend on k? What about
Do (MR (2))?
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