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Bounds on the Non�convexity of Ranges

of Vector Measures with Atoms
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Abstract� Upper bounds are given for the distance between the range� matrix
range and partition range of a vector measure to the respective convex hulls
of these ranges� The bounds are speci�ed in terms of the maximum atom size�
and generalize convexity results of Lyapounov �����	 and Dvoretzky� Wald
and Wolfowitz ���
�	� Applications are given to the bisection problem� the
�problem of the Nile�� and fair division problems�

�� Introduction

Lyapounov�s celebrated convexity theorem of ���� �e�g� ��� ��� ��� ��	
 as�
serts that the range of a �nite�dimensional
 atomless vector measure is convex and
compact� A generalization of Lyapounov�s theorem due to Dvoretzky
 Wald and
Wolfowitz ��	 says that the same is true for the matrix�k�range and the partition
range �see De�nition ��� below
�

If the vector measure has atoms
 then convexity of all three ranges may fail
in general
 although atomlessness is not a necessary condition� Gouweleeuw �		
has given necessary and su�cient conditions for the range �or matrix�k�range
 to
be convex
 as well as non�trivial su�cient conditions for the partition range to be
convex�

A di�erent approach was adopted by Elton and Hill �
	
 who proved a bound
on how far from convex the range may be
 as a function of the maximum atom size�
The aim of this paper is to present such non�convexity inequalities for the three
types of ranges mentioned above� Some of these are sharp
 whereas in other cases
the best possible bounds are not known to the author�

The �rst result is a slightly improved
 but sharp
 version of Elton and Hill�s
inequality� The proof presented here is very similar to that of Elton and Hill
 with
only a few minor adaptations� The original inequality is also included for the sake
of comparison�

Next in line are two non�convexity inequalities for the matrix�k�range� These
are proved using the improved inequality for the range
 and a device of chaining
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together vector measures due to Blackwell� It is
 however
 the author�s belief that
these inequalities are not very sharp�

The last result is a sharp non�convexity bound for the partition range� Its proof
�see ��	
 is beyond the scope of this paper and is therefore omitted�

This paper is organized as follows� Section � lists the main results described
above
 accompanied by examples demonstrating their sharpness when applicable�
Section � contains the necessary preparations for the proofs of the range and matrix�
k�range inequalities
 which then follow in Section �� Section � gives applications of
the main results to some well�known partitioning problems
 including the bisection
problem
 the �problem of the Nile� and the problem of fair division� Section �

�nally
 lists two open problems�

�� Non�convexity inequalities

Throughout this paper
 �� ��� � � � � �n will always denote �nite
 non�negative

countably additive measures on a �xed measurable space ���F
� The vector mea�
sure �� � ���� � � � � �n
 is de�ned by

���A
 �� ����A
� � � � � �n�A

 � R
n � A � F �

A set E � F is called a �scalar
 atom of � if ��E
 � � and for each F � E�F � F �

��F 
 � f�� ��E
g� Similarly
 E is a vector atom of �� � ���� � � � � �n
 if ���E
 �� ��

and for each F � E�F � F � ���F 
 � ���E
 or ���F 
 � ��� A �vector
 measure is
atomless if it does not have any atoms� A measure �resp� vector measure
 is purely

atomic if is assigns mass � �resp� ��
 to the complement of the union of its atoms�

Remark ���� From the de�nition of vector atom it can be seen that if E is a
vector atom of ��
 then

�i
 E is a scalar atom of at least one �i�
�ii
 for each i � f�� � � � � ng
 either E is an atom of �i
 or �i�E
 � ��

Conversely
 it follows from Lemma ��� �iii
 in �		 that if E is a scalar atom of �i
for some i
 then E contains a vector atom F of �� with ���F 
 � ���E
�

As a consequence
 a vector measure is purely atomic if and only if all its com�
ponent measures are�

A �measurable
 k�partition is an ordered collection �A�� � � � � Ak
 of subsets of

� such that Ai � F �i � �� � � � � k
� Ai �Aj � � for all i �� j
 and
Sk
i�� Ai � �� Let

�k denote the collection of all k�partitions of ��

In the following de�nition
Mn�k�R
 denotes the vector space of all n�k matrices
with real entries�

Definition ���� For a vector measure �� � ���� � � � � �n



�i
 R���
 �� f���A
 � A � Fg � R
n is the range of ���

�ii
 MRk���
 �� f��i�Aj


n�k
i���j�� � �A�� � � � � Ak
 � �kg � Mn�k�R
 is the matrix�

k�range of ���
�iii
 PR���
 �� f����A�
� � � � � �n�An

 � �A�� � � � � An
 � �ng � R

n is the partition
range of ���

Proposition ���� �Lyapounov �����
	� R���
 is compact� and if �� is atomless�
then R���
 is convex�
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Proposition ���� �Dvoretzky
 Wald and Wolfowitz �����
	� If �� is atomless�
then MRk���
 is convex and compact�

Proposition ��� was later improved by Dubins and Spanier ��	
 who proved that
MRk���
 is always compact�

A direct consequence of Proposition ��� is the following�

Proposition ���� If �� is atomless� then PR���
 is convex and compact�

The main goal of this paper is to generalize the above convexity results to
measures with atoms
 as was �rst done by Elton and Hill �����
� In order to do so

the following notation is needed� Recall that for a vector x � Rn 
 the p�norm kxkp
of x is de�ned by

kxkp ��
��Pn

i�� jxi jp
���p

if � � p ���

max��i�n jxi j if p ���

Note that the norms �k�kp� p � ����	
 are related via the sharp inequalities

kxkq � kxkp and n���pkxkp � n���qkxkq for p � q �������


and

kxk� � kxkp � n��pkxk� for p �������


�See
 for example
 Theorems �� and �� in ���	
�
By identifying Mn�k�R
 with R

nk 
 the norm k�kp can be naturally extended to
Mn�k�R
 as follows�

k�ai�j
n�ki���j��kp ��
��Pn

i��

Pk
j�� jai�j jp

���p
if � � p ���

max��i�n���j�k jai�j j if p ���

If x and y are points in R
n 
 then dp�x� y
 � kx 	 ykp denotes the distance

between x and y� For a set S in Rn and a point x in Rn 
 dp�x� S
 � infy�S dp�x� y

is the distance from x to S
 and Dp�S
 denotes the Hausdor� distance from S to
its convex hull co�S
�

Dp�S
 �� sup
x�co�S�

dp�x� S
�

For Mn�k�R

 the distances dp and Dp are de�ned similarly�

Definition ���� For � 
 � and p � ����	
 Pn�p��
 is the collection of all
n�dimensional vector measures �� for which k���E
kp � � for each atom E of ���

The following theorem generalizes the convexity statement of Proposition ����
A proof is given in Section � below�

Theorem ���� Let �� be a vector measure� and let � � p � ��

�i� If �� � Pn����
� then D��R���

 � �n���

�ii� If �� � Pn�p��
� then Dp�R���

 � �
��n

��p�

The bound in �ii� is attained for all p � ��� �	� The bound in �i� is of the correct
order of magnitude in n�

Theorem ��� �i
 is the original generalization of Lyapounov�s theorem by Elton
and Hill� Note that �ii
 implies �i

 as follows easily by substituting p � � in �ii


and using ����
� As a consequence
 Elton and Hill�s inequality holds under more
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general conditions
 namely whenever k���E
k� � �
p
n for each vector atom E of ���

The following example shows that the bound in �ii
 is attained for all p � ��� �	�

Example ���� Let �i � �	fig� i � �� � � � � n
 where 	 denotes Dirac mea�
sure� Then R���
 � f�� �gn and hence co�R���

 � ��� �	n� In particular
 y �
����� � � � � ���
 � co�R���


 and for each x � R���
� kx	 ykp � �

��n
��p�

Elton and Hill give the following example to show that the bound in Theorem
��� �i
 is of the correct order of magnitude in n�

Example ���� Fix n � N
 let m � �k � n � �k
�
 and let fwigm��i�� be the
m 	 � mean�zero Walsh functions on m points �see ��
	
� Then wi � f	�� �gm

wi�wj for i �� j
 and wi��� for each i
 where �� � ��� �� � � � � �
� For example
 when
n � � �so k � � and m � �



w� � ��� ��	��	�
� w� � ���	�� ��	�
� and w� � ���	��	�� �
�
Let � � f�� �� � � � �m 	 �g
 and de�ne ���fjg
 � �wi � ��
��
 j � �� � � � �m 	 ��
Let y � ����
�� � ����
�� � ����
�� � co�R���

� It can be shown �see �
	
 that
d��x� y
 
 m�� for each x � R���
�

Since �m � �k
� � n
 it follows by rescaling that the best possible upper bound
in Theorem ��� �i
 is at least �n�� for general n
 and at least �n�� if n is a power
of ��

The next example shows that the statement of Theorem ��� �ii
 is false for
p � � and large n� No non�trivial inequalities are known to the author for p � ��

Example ����� Let m � �k � n � �k
�
 and let �� be the same vector measure

as in Example ���� Then k���fjg
kp �
�
m
�

���p
for each j
 so �� � Pm�p

��
m
�

���p�
�

From Example ��� it follows that D��R���

 
 m��
 hence using ����
 it follows
that Dp�R���

 
 m��pm����m�� � m��pm������ Since ��p � ��� it follows that

Dp�R���

 � �
�

�
m
�

���p
m��p for su�ciently large m�

The following theorem gives upper bounds on the non�convexity of the matrix�
k�range� Its proof is given in Section � below�

Theorem ����� Let �� be a vector measure and let k � N�
�i� If �� � Pn����
� then D��MRk���

 � �n

p
�k�

�ii� If �� � Pn����
� then D��MRk���

 � �
p
�nk�

The next theorem gives a sharp non�convexity bound for the partition range�
Its proof can be found in ��	�

Theorem ����� If �� � Pn����
� then

D��PR���

 � n	 �

n
��

and this bound is attained�

Example ����� �sharpness of Theorem ����
 Let �i � �	f�g� i � �� � � � � n�
Then PR���
 � f�ui � i � �� � � � � ng
 where ui denotes the i	th unit vector in
R
n with � in the i	th position and zeroes elsewhere� It follows that co�PR���

 �
fx � R

n

 �
Pn

i�� xi � �g� In particular
 y � ���n� � � � � ��n
 � co�PR���


 and for
each x � PR���
� kx	 yk� � ��n	 �
�n�
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The following immediate consequence of Theorem ���� improves on an earlier
result of Hill and Tong ����	
 Theorem ���
�

Corollary ����� If �� � Pn����
� then

D��PR���

 � n	 �p
n
��

Example ����� The bound in Corollary ���� is of the correct order of magni�
tude in n� let �i � �	fig� i � �� � � � � n� then PR���
 � f�� �gn
 hence co�PR���

 �
��� �	n� In particular
 y � ����� � � � � ���
 � co�PR���


 and for each x � PR���


kx	 yk� � �

p
n���

�� Preliminaries

The goal of this section and the next is to prove Theorems ��� and ����� For a
proof of Theorem ���� the reader is referred to ��	�

Most of the de�nitions and lemmas in this section are taken from Elton and
Hill �
	� However
 some of the statements are slightly more general than the corre�
sponding statements in �
	� Most of the proofs are short
 and are included here in
order to make this paper more self�contained�

Lemma ���� For each ��� each 
 � � and each q � ����	� there exists a mea�
surable partition fBigNi�� of � satisfying

�B � F � 
J � f�� � � � � Ng � k���B
	 ���
�
j�J

Bj
kq � 
�����


Proof� Since R���
 is bounded
 there is an 
�net fx���� � � � � x�m�g of R���
�
that is fx���� � � � � x�m�g � R���

 and for each x � R���
 there is an i � m such that
kx	 x�i�kq � 
� Let fAigmi�� satisfy ���Ai
 � xi
 i � �� � � � �m
 and let fBigNi�� � F
be a measurable partition of � such that ��B�� � � � � BN
 � ��A�� � � � � Am
� �Such
a partition exists because ��A�� � � � � Am
 is �nite�
 It is easily seen that fBigNi��
satis�es ����
�

The next lemma is stated and proved in �
	 for p � � only� the more general
statement below requires a di�erent proof� It will be used in the next section for
p � ��

Lemma ���� For each p � ����
� each �� � Pn�p��
 and each B � F there
exists a measurable partition fBigki�� of B such that k���Bi
kp � � for all i � k�

Proof� Let B � F � By R�enyi ��
	
 p���
 each �i has at most countably many
atoms
 hence �� has at most countably many vector atoms� Let A be the union of
all the vector atoms of ��� Then A � F � Since �� is atomless on BnA
 there is
a measurable partition �Cj


l
j�� of BnA such that ���Cj
 � �n���p for all j � l

�where ��� � �
� Repeating this argument for �� and each Cj 
 then for ��
 etc�


yields a partition �Dj

L
j�� of BnA such that �i�Dj
 � �n���p for all i � n and

j � L
 which implies k���Dj
kp � � for all j � L�
The argument for B � A is slightly di�erent� If the number of vector atoms

of �� is �nite
 then there is nothing left to prove� Otherwise
 let the atoms of �� be
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E�� E�� � � � Since

�X
j��

k���Ej
kp �
�X
j��

k���Ej
k� �
�X
j��

nX
i��

�i�Ej
 �

nX
i��

�X
j��

�i�Ej
 �

nX
i��

�i�A
 ���

there is j� � N such that��������
�
� ��

j�j�
�

Ej

�
A
������
p

�
�X

j�j�
�

k���Ej
kp � ��

Taking intersections of the sets E�� � � � � Ej� and
S�
j�j�
�

Ej with B completes the
proof�

Lemma ���� For all p� q � ����	� 
 � � and �� � Pn�p��
� there is a purely
atomic vector measure ��� � Pn�p��
 with �nitely many atoms� such that

Dq�R���

 � Dq�R����

 � 
�

The idea of the proof of Lemma ��� is that Lemma ��� and a repeated ap�
plication of Lemma ��� yield a partition fBigNi�� of � satisfying both ����
 and
k���Bi
kp � � for all i � N � The restriction ��� of �� to ��B�� � � � � BN 
 then has the
desired property� �See �
	
 x� for the details
�

Lemma ��� says that it is in fact su�cient to prove Theorem ��� for purely
atomic measures with a �nite number of atoms� Since the range of such a vector
measure is a �nite set
 this reduction turns the problem into one of �nite geometry�

For the remainder of this section
 V is a �nite set of �not necessarily distinct

points in R

n

 � f�r�� ���� rn
 � ri � R� ri 
 � for all i � ng
 and jV j denotes the

cardinality of V �

Definition ����

��V 
 �

�X
xi�V

	ixi � 	i � f�� �g
	
� C�V 
 �

�X
xi�V

tixi � ti � ��� �	

	
�

Lemma ���� co���V 

 � C�V 
�

The next lemma states that C�V 
 can be expressed as the union of translates

of subsets of the form C� �V 
 where j �V j � n� Let the vector sum V� � V� of two sets
V� and V� be de�ned by V� � V� � fv� � v� � v� � V�� v� � V�g�

Lemma ���� C�V 
 �
Sf��V n �V 
� C� �V 
 � �V � V� j �V j � ng�

A direct algebraic proof of Lemma ��� can be found in �
	� Here a di�erent
proof is given
 based on the Shapley�Folkman lemma from convex geometry�

Lemma ���� �Shapley and Folkman � see ��	
 x�
 Let V�� � � � � Vk be nonempty
subsets of Rn � Then for each y � co�V�
�� � �� co�Vk
 there exists a representation
y � x� � � � �� xk� with xi � co�Vi
 for all i� but xi �� Vi for at most n indices i�

Lemma ���� co��k
i��Vi
 � �k

i�� co�Vi
 for all V�� � � � � Vk�

Proof� Straightforward�
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Proof of Lemma ���� Clearly C�V 
 � Sf��V n �V 
 � C� �V 
 � �V � V� j �V j �
ng� Conversely
 let x�� � � � � xk denote the elements of V �counting multiplicities


and let Vi �� f�� xig� Then ��V 
 � �k

i��Vi
 and �using Lemma ���
 C�V 
 �
co���V 

 � �k

i�� co�Vi
� Now �x y � C�V 
� then by Lemma ��� there is a rep�

resentation y �
Pk

i�� yi
 where yi � co�Vi
 for all i
 and yi �� Vi for at most n

indices i� Let I �� fi � yi �� Vig
 and de�ne �V �� fxigi�I � It is easily checked that

y � ��V n �V 
� C� �V 
�

The next lemma is critical for the proof of Theorem ���� Its proof is taken from
�
	�

Lemma ���� For all x� y � R
n and all t � ��� �	�

minfkx� ��	 t
yk��� kx	 tyk��g � kxk�� � kyk�����
Proof� Let hx� yi �Pn

i�� xiyi denote the standard inner product on R
n � First

consider the case where �hx� yi 
 �t� 	 ��	 t
�
kyk��� Then
kx	 tyk�� � kxk�� � t�kyk�� 	 �thx� yi

� kxk�� � t�kyk�� 	 t�t� 	 ��	 t
�
kyk��
� kxk�� � t��	 t
kyk�� � kxk�� � kyk�����

The case where �hx� yi � �t� 	 ��	 t
�
kyk�� is similar
 yielding kx � ��	 t
yk�� �
kxk�� � kyk�����

Lemma ����� Let jV j � n� If kyk� � � for all y � V � then D����V 

 � p
n���

Proof� Let V � fx�� ���� xng and �x x �
Pn

i�� tixi � C�V 
� Applying Lemma
��� n times implies the existence of �	i


n
i�� � f�� �gn satisfying�����

nX
i��

	ixi 	 x

�����
�

�

�

�����
nX
i��

�	i 	 ti
xi

�����
�

�

� n �maxfkyk�� � y � V g�� � n���

�� Proofs of the range and matrix range inequalities

Proof of Theorem ���� Since �ii
 implies �i

 it is enough to prove �ii
� Note
�rst that if �ii
 holds for p � �
 then it holds for each p � ��� �	� For
 suppose that
�� � Pn�p��
� then also �� � Pn����
 in view of ����

 so D��R���

 � �

��n
���
 and a

second application of ����
 yields Dp�R���

 � �
��n

��p�
It is therefore su�cient to prove �ii
 for p � �� Let 
 � � and �� � Pn����
� By

Lemma ��� there exists a purely atomic vector measure ��� � Pn����
 with �nitely
many atoms such that

D��R���

 � D��R����
 � 
�����


Now R����
 � ��V 

 where V � f����E
 � E is a vector atom of ���g
 so applying
Lemma ���
 Lemma ���� and rescaling yields

D��R����
 � �
p
n���

which together with ����
 completes the proof of �ii

 since 
 was arbitrary�
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Proof of Theorem ����� Since �ii
 implies �i

 it su�ces to prove �ii
� Fix
�A�� � � � � Ak
 and �B�� � � � � Bk
 in �k and t � ��� �	� Following Dubins and Spanier
��	
 de�ne the �nk�dimensional vector measure �m by

�m�S
 � ��i�S � Aj
� �i�S � Bj


n�k
i���j���

Note that �m and �� have the same vector atoms� If E is a vector atom of �m
 then

since distinct vector atoms are essentially disjoint
 it can be assumed that E � Aj�

and E � Bj� for some j� and j�� Hence E � Aj � � for all j �� j� and E � Bj � �
for all j �� j�
 so

k�m�E
k�� � �k���E
k�� � ����

Applying Theorem ��� �ii
 to �m now yields D��R��m
 � �
p
� � p�nk�� � �

p
nk
 so

there exists a set S � F with k�m�S
	 t�m��
k� � �
p
nk
 that is


nX
i��

kX
j��

��i�S � Aj
	 t�i�Aj


� �

nX
i��

kX
j��

��i�S � Bj
	 t�i�Bj


� � ��nk�����


Since j �i�S � Bj
 	 t�i�Bj
 j�j �i�BjnS
 	 �� 	 t
�i�Bj
 j
 it follows from ����

that

nX
i��

kX
j��

��i�S � Aj
	 t�i�Aj


� �

nX
i��

kX
j��

��i�BjnS
	 ��	 t
�i�Bj


� � ��nk�

����


Letting Cj � �Aj � S
 � �BjnS
 it follows from ����
 that

����


nX
i��

kX
j��

��i�Cj
	 t�i�Aj
	 ��	 t
�i�Bj


�

�

nX
i��

kX
j��

��i�Aj � S
 � �i�BjnS
	 t�i�Aj
	 ��	 t
�i�Bj


�

� kM �N 	 P 	Qk�� � ��kM 	 Pk�� � kN 	Qk��
 � ���nk�

where the matrices M�N�P and Q are de�ned in the obvious manner
 i�e� M �

��i�Aj � S

n�ki���j��
 etc� Taking square roots on both sides of ����
 completes the

proof of �ii
�

Remark ���� The device of chaining together vector measures was introduced
by Blackwell ��	� It was used by Dubins and Spanier ��	 to derive convexity of the
matrix range from Lyapounov�s theorem in the atomless case
 and by Hill and Tong
���	 to obtain a non�convexity bound for the partition range from Theorem ��� �i
�
However
 the inequality presented in Theorem ���� is much stronger than Hill and
Tong�s result� It is therefore the author�s belief that sharper inequalities than those
presented in Theorem ���� can be found�

�� Applications

Lyapounov�s theorem has been applied in a number of areas including optimal
stopping theory
 control theory and statistical decision theory� In principle
 any
application of Propositions ���
 ��� or ��� can be generalized to measures with
atoms using the corresponding generalization from Section �� The aim of this
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section is to illustrate this by a few examples
 including the bisection problem
 the
�problem of the Nile� and the problem of fair division�

�� The objective in the bisection problem is to �nd a set A � F such that
�i�A
 �

�
��i��
 for all i� If ��� � � � � �n are atomless
 then the existence of such a

set is a direct consequence of Proposition ���� The following theorem generalizes
this result to measures with atoms�

Theorem ���� If k���E
k� � � for every vector atom E of ��� then there exists
a set A � F satisfying

j �i�A
	 �

�
�i��
 j� �

p
n�� for all i � n�

Proof� Since ��� � � � � �
 � ����
 � R���
 and �����
� � � � � �n��

 � ����
 �
R���

 it follows that co�R���

 contains the vector � ������
� � � � �

�
��n��

� Apply

Theorem ��� �ii
�

An approximate bisection result based on Theorem ��� �i
 can
 of course
 be
stated and proved analogously�

For an application of Theorem ��� to the bang�bang principle of control theory

see Elton and Hill �
	�

�� Fisher�s �problem of the Nile� �see Dubins and Spanier ��	
� �Each year the
Nile would  ood
 thereby irrigating or perhaps devastating parts of the agricultural
land of a predynastic Egyptian village� The value of di�erent portions of the land
would depend upon the height of the  ood� In question was the possibility of giving
to each of the k residents a piece of land whose value would be ��k of the total land
value no matter what the height of the  ood��

Neyman ���	 proved that the problem has a solution under the assumption
that there are only a �nite number
 say n
 of possible  ood heights� The following
theorem generalizes Neyman�s result�

Theorem ���� If ��� � � � � �n are probability measures and k���E
k� � � for ev�
ery vector atom E of �� � ���� � � � � �n
� then there exists a k�partition �A�� � � � � Ak

of � such that

j �i�Aj
	 �

k
j � �

p
�nk for all i � n and j � k�

Proof� For r � �� � � � � k
 let �A
�r�
j 
kj�� be the partition with A

�r�
r � � and

A
�r�
j � � if j �� r� Then

Mr �� ��i�A
�r�
j 

n�ki���j�� � MRk���


for r � �� � � � � k� Note that Mr is the matrix with only ��s in the r�th column and
��s elsewhere� It follows that �

kM� � � � � �kMk � co�MRk���

� Applying Theorem
���� �ii
 gives the desired result�

�� In the classical fair division problem the objective is to �nd a partition
�A�� � � � � An
 of � such that

�i�Ai
 
 �

n
for all i � n�����
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where ��� � � � � �n are probability measures� If ��� � � � � �n are atomless
 then Propo�
sition ��� guarantees the existence of such a partition
 even with equality in ����
�
If
 in addition
 �i �� �j for some i �� j
 then there is a partition for which ����

holds with strict inequality �see for example Dubins and Spanier ��	
�

If the measures have atoms then in general a partition satisfying ����
 need
not exist� However
 if the measures are not all equal and the atoms are su�ciently
small
 then the di�erentiation between the measures may compensate for the non�
divisibility of the atoms
 making fair division still possible� To make this more
precise
 let

M �� supf
nX
i��

�i�Bi
 j �Bi

n
i�� is a partition of �g�

The following theorem generalizes a result of Elton
 Hill and Kertz �
	�

Theorem ���� If k���E
k� � � for every vector atom E of ��� then there exists
a partition �A�� � � � � An
 of � such that

�i�Ai
 
 �n	M � �
�� 	 n	 �

n
�� i � �� � � � � n�

Proof� As in Legut ���	
 applying Theorem ���� at the place where ���	 uses
convexity of the partition range�

Corollary ���� If k���E
k� � �M	�
�n	�
���n	M��
�� for every vector
atom E of ��� then there is a partition �A�� � � � � An
 of � satisfying ���	��

Example ���� Let n � � and suppose that M � � �note that � is a realistic
value in this case
 sinceM can assume any value between � and �
� If k���E
k� � �

	
for every vector atom E of ��
 then Corollary ��� implies the existence of a fair
division in the sense of ����
�

�� Open Problems

Problem �� Find a non�convexity inequality analogous to Theorem ��� �ii

for p � �� in other words
 �nd the best possible �or at least a good
 constant
K�n� �
 such that if �� � Pn����

 then D��R���

 � K�n� �
� An example of the
signi�cance of such a sharp bound is that it would yield the best possible upper
bound in Theorem ���� Note that by Example ���
 the order of magnitude of
K�n� �
 must be at least

p
n�

Problem �� Find a sharp non�convexity inequality for the matrix�k�range�
The inequalities given in Theorem ���� are probably far from sharp
 as was already
pointed out in Remark ���� In fact
 no examples are known to the author of
vector measures �� for which D��MRk���

 is unbounded in k� Is there an upper
bound for the non�convexity of MRk���
 that does not depend on k! What about
D��MRk���

!
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