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Abstract

Suppose X1, X2, . . . are i.i.d. nonnegative random variables with finite expec-

tation, and for each k, Xk is observed at the k-th arrival time Sk of a Poisson

process with unit rate which is independent of the sequence {Xk}. Let t > 0 be

a finite time horizon. Several comparisons are made between the expected max-

imum M(t) := E[maxk≥1 Xk I(Sk ≤ t)] and the optimal stopping value V (t) :=

supτ∈T E[Xτ I(Sτ ≤ t)], where T is the set of all IN-valued random variables τ such

that {τ = i} is measurable with respect to the σ-algebra generated by X1, . . . , Xi and

S1, . . . , Si. For instance, it is shown that M(t)/V (t) ≤ 1 + α0, where α0
.= 0.34149

is the unique value of α such that
∫ 1

0
(y − y ln y + α)−1 dy = 1; and this bound is

asymptotically sharp as t → ∞. Another result is that M(t)/V (t) < 2 − (1 − e−t)/t,

and this bound is asymptotically sharp as t ↓ 0. Analogous upper bounds for the

difference M(t)−V (t) are also given, under the additional assumption that the Xk are

[0, 1]-valued.
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1 Introduction

S. Karlin [4] studied the following problem. An item is for sale, and independent, identically

distributed price offers X1,X2, . . . arrive according to a Poisson process with rate λ. The

item must be sold by a fixed time t > 0, or it becomes worthless. Thus, if Si denotes the

arrival time of the i-th offer (i ∈ IN), the optimal expected return is given by

V (t) := sup
τ∈T

E[Xτ I(Sτ ≤ t)], (1)

where T is the set of all IN-valued random variables (stopping rules) τ such that {τ = i} is

measurable with respect to the σ-algebra generated by X1, . . . ,Xi and S1, . . . , Si. Assuming

the price offers are independent of the arrival process, Karlin showed that V (t) is the unique

solution of the initial value problem

V ′ = λE(X1 − V )+, V (0) = 0, (2)

and the optimal policy is to accept the first offer whose value X satisfies X > V (τ), where

τ is the amount of time remaining when the offer arrives. Sakaguchi [8] gives explicit

solutions of (2) for several common distributions of X1.

The purpose of this paper is to compare V (t) with the expected maximum

M(t) := E(max{X1, . . . ,XN(t)}),

where N(t) denotes the number of arrivals up to time t. (The maximum of an empty set

is taken to be zero.) In particular, reasonably tight upper bounds are given for the ratio

M(t)/V (t) and the difference M(t)−V (t), the latter under the additional assumption that

the price offers are uniformly bounded. The work is inspired by analogous comparisons

in the discrete-time setting, which are known in the literature as prophet inequalities.

Let Z1, . . . , Zn be independent nonnegative random variables with finite expectations, and

define the quantities Vn := V (Z1, . . . , Zn) := sup{EZτ : τ is a stopping rule for Z1, . . . , Zn},
and Mn := E(max{Z1, . . . , Zn}). Krengel and Sucheston [6] proved that Mn ≤ 2Vn, with

strict inequality if Z1, . . . , Zn are not all identically equal to zero. Hill and Kertz [2] showed

that if the nonnegativity condition is replaced with the condition that the Zi take values in

an interval [a, b], then Mn−Vn ≤ (b−a)/4. While the constants 2 and 1/4 are best-possible

2



in general, sharper bounds hold if the Zi are known to be identically distributed. This was

shown by Hill and Kertz [3], who proved the following two theorems.

Theorem A (Hill and Kertz [3]). There exist constants {an} with 1.1 < an < 1.6, n ≥ 2,

such that if Z1, . . . , Zn are i.i.d. nonnegative random variables, then Mn ≤ anVn. This

bound is sharp, and holds with strict inequality if Z1 is not identically equal to zero.

Theorem B (Hill and Kertz [3]). There exist constants {bn} with 0 < bn < 1/4, n ≥ 2,

such that if Z1, . . . , Zn are i.i.d. nonnegative random variables taking values in [a, b], then

Mn − Vn ≤ bn(b − a). This bound is attained.

The precise definitions of the constants an and bn, along with some sample values, are

given in Section 2.

Comparisons of the above kind have been called “prophet inequalities” because of the

natural interpretation of Mn as the optimal expected return of a player with complete

foresight into the future. This paper develops analogous inequalities for a continuous-time

model, where observations arrive according to a Poisson process.

No claim is made here as to having “best-possible” bounds; indeed, it seems unlikely

that such bounds can be found explicitly (other than by a lucky guess of the extremal

distributions), since many of the tools that have worked well in the discrete-time setting

(backward and forward induction, balayage, etc.) are inadequate here in view of the

continuous time parameter. In particular (and contrary to the discrete-time case), there is

no mechanism to immediately reduce the problem to random variables taking only finitely

many values.

Throughout the paper it is assumed that λ = 1. However, the results can easily be

restated for arbitrary λ > 0 by a simple time scaling, replacing ‘t’ with ‘λt’. In fact,

all of the results are valid (with only trivial modifications) for non-homogeneous Poisson

processes as well. The random variables X,X1,X2, . . . are assumed to be nonnegative and

i.i.d., with finite expectation, and not identically equal to zero.

Four inequalities are proved: two for the ratio M(t)/V (t), and two for the difference

M(t)−V (t), the latter under the additional assumption that X is bounded. While all of the

bounds hold for every t > 0, one pair of bounds is reasonably good for large values of t (and

3



is asymptotically sharp as t → ∞), while the other pair of bounds is fairly sharp for small

values of t (and is asymptotically sharp as t ↓ 0). The bounds for “large” t in Section 2 use

Theorems A and B above, and in fact the results are that M(t)/V (t) ≤ limn→∞ an
.= 1.341,

and if X is [0, 1]-valued, then M(t) − V (t) ≤ lim supn→∞ bn (the value of which is not

known at present). Obviously, these bounds are far from sharp when t is small, since the

prophet’s advantage disappears as the expected number of observations approaches zero.

This is made precise by the inequalities for “small” t in Section 3. For example, Theorem

3.2 shows that M(t)/V (t) < 2 − (1 − e−t)/t. The proofs of these inequalities make use of

pure threshold rules. The idea is that when the expected number of observations is small,

threshold rules should not perform much worse than the optimal rule.

In the discrete-time setting, threshold stopping rules were used by Samuel-Cahn [9, 10],

who proved that the advantage of a prophet over a mortal player without foresight does

not increase (in the extremal case) when the mortal is limited to the use of pure threshold

rules. Rinott and Samuel-Cahn [7] used threshold rules to prove that Mn ≤ 2Vn even for

a class of negatively dependent random variables.

Just how close the bounds of Sections 2 and 3 are to being sharp is explored in Section 4,

which uses two-point and three-point distributions for X to obtain lower bounds on the

best-possible ratio and difference constants. Section 5 gives examples in which the price

offers arrive according to a discrete-time renewal process. The first example concerns

the binomial process, for which it is shown that the expected maximum and stop rule

supremum satisfy the bounds of Theorems A and B. The second example shows that the

bounds derived in Section 2 fail to hold for general renewal processes.

The following notation is used throughout. For real numbers x and y, x∨y denotes the

maximum of x and y. For constants a < b, the collection of all random variables taking

values in [a, b] is denoted by X[a,b]. When it is desirable to emphasize the dependence of

M(t) and V (t) on the distribution of X, they will be written as M(t;X) and V (t;X),

respectively. Finally, for s > 0, define X∗
s := max{X1, . . . ,XN(s)}.
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2 Long-range prophet inequalities

This section develops upper bounds for the ratio and difference of M(t) and V (t) which

are fairly sharp when t is large. The following simple inequality will be helpful.

Lemma 2.1 For all s > 0 and all c ≥ 0,

E(X∗
s − c)+ ≤ s E(X − c)+.

Proof. We have

E(X∗
s − c)+ =

∞∑
n=1

E(X1 ∨ · · · ∨ Xn − c)+ P(N(s) = n)

≤
∞∑

n=1

n E(X − c)+ P(N(s) = n)

= EN(s) · E(X − c)+ = s E(X − c)+. �

Theorem 2.2 For all t > 0,

M(t) ≤ (1 + α0)V (t),

where α0
.= 0.34149 is the unique value of α such that

∫ 1
0 (y − y ln y + α)−1 dy = 1.

Proof. Fix n ≥ 2, and let δ := t/n. Consider an intermediate player, to be called the

“partial prophet”, who has limited foresight in the sense that he can see, at the beginning

of each time interval Ii := ((i−1)δ, iδ], i = 1, . . . , n, all of the observations (if any) arriving

in that interval. For i = 1, . . . , n, let Zi denote the largest of the observations arriving in

the interval Ii (or Zi = 0 if no observations arrive in that interval). It is a routine exercise

to verify that Z1, . . . , Zn are i.i.d.

Let vj := V (Zj+1, . . . , Zn), for j = 0, 1, . . . , n − 1, and let vn := 0. Since the partial

prophet sequentially observes Z1, . . . , Zn, his optimal expected return is simply v0, and, by

backward induction [1, p. 50], his optimal rule is to stop in the first time interval Ii for

which Zi ≥ vi, and to accept the largest observation, Zi, in that interval.

Now consider the following stopping rule for the gambler:

Accept the first observation Xj such that, if Xj arrives in the time interval Ii,

then Xj ≥ vi.
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Let Vδ(t) denote the expected return from this stopping rule. Define Z ′
i = Zi I(Zi ≥ vi),

and let X ′
i,1,X

′
i,2, . . . denote the successive values of those Xj arriving after time (i − 1)δ

for which Xj ≥ vi. Let N ′
i be the number of such observations (with Xj ≥ vi) that arrive

in the interval Ii. Observe that N ′
i has a Poisson distribution with mean δ P(X ≥ vi), and

Z ′
i = max{X ′

i,1, . . . ,X
′
i,N ′

i
}. Thus, Lemma 2.1 applied to the sequence X ′

i,1,X
′
i,2, . . . yields

that

EZ ′
i ≤ δ P(X ≥ vi) EX ′

i,1. (3)

Note that

v0 =
n∑

i=1

P(Z1 < v1, . . . , Zi−1 < vi−1) E[Zi I(Zi ≥ vi)], (4)

and

Vδ(t) =
n∑

i=1

P(Z1 < v1, . . . , Zi−1 < vi−1) E[X ′
i,1 I(Zi ≥ vi)]. (5)

Using (3), we obtain that

E[X ′
i,1 I(Zi ≥ vi)] = EX ′

i,1 P(N ′
i ≥ 1) ≥ EZ ′

i ·
P(N ′

i ≥ 1)
δ P(X ≥ vi)

= EZ ′
i ·

1 − e−δ P(X≥vi)

δP(X ≥ vi)
≥ EZ ′

i · (1 − e−δ)/δ

= E[Zi I(Zi ≥ vi)](1 − e−δ)/δ,

where the second inequality follows since the function (1 − e−δp)/p is decreasing in p.

Substituting this result into (5) and comparing with (4) yields the conclusion

v0 ≤ δ

1 − e−δ
Vδ(t) ≤

t/n

1 − e−t/n
V (t). (6)

By Theorem A,

M(t) = E(X1 ∨ · · · ∨ XN(t)) = E(Z1 ∨ · · · ∨ Zn) < anv0,

and, hence,

M(t) < an
t/n

1 − e−t/n
V (t).

It was shown by Kertz [5] that limn→∞ an = 1 + α0. Since n was arbitrary, the theorem

follows upon letting n → ∞. �
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Theorem 2.3 Assume that X1,X2, . . . are [0, 1]-valued. Then for all t > 0,

M(t) − V (t) ≤ lim sup
n→∞

bn.

Proof. We use the notation from the proof of Theorem 2.2. Since v0 ≤ P(N(t) ≥ 1) =

1 − e−t, Theorem B and (6) imply that

M(t) − V (t) ≤ bn + (1 − e−t)

[
1 − n(1 − e−t/n)

t

]
, for all n ≥ 2. (7)

Letting n → ∞ completes the proof. �

Remark 2.4 The value of lim sup bn does not seem to be known at present. From the

numerical values of bn given in Table 1 (bn = βn), it seems likely that lim supn→∞ bn ≈
.1113. However, in the absence of an exact value for this limit, equation (7) gives good

practical upper bounds by taking n = 106. For instance, if t = 1000 the right hand side of

(7) evaluates to .11176, and this is a rigorous bound.

Remark 2.5 The results of Theorems 2.2 and 2.3 hold equally for any non-homogeneous

Poisson process with rate function λ(x), x > 0, provided λ(x) is bounded on bounded

intervals. The only modification required in the proof of Theorem 2.2 concerns the choice

of the n intervals that partition the interval (0, t]. Note that the intervals can always be

chosen so that the number of arrivals in each interval is Poisson with the same parameter

µ = (1/n)
∫ t
0 λ(x) dx. With this new partition is again associated an i.i.d. sequence of

random variables Z1, . . . , Zn, and the rest of the proof goes through with µ in place of δ.

How sharp are the bounds in Theorems 2.2 and 2.3? Some insight may be gained by

analyzing the extremal distributions from Hill and Kertz [3]. The following notation is taken

from that paper. For n > 1 and w, x ∈ [0,∞), let φn(w, x) = (n/(n−1))w(n−1)/n+x/(n−1).

For α ∈ [0,∞), define η0,n(α) = φn(0, α), and inductively, ηj,n(α) = φn(ηj−1,n(α), α) for

j ≥ 1. In their Propositions 3.4 and 3.8, Hill and Kertz show that

(i) there is a unique αn ∈ (0, 1) such that ηn−1,n(αn) = 1; and

(ii) there is a unique βn ∈ (0, 1) such that (n − 1)[ηn,n(βn) − ηn−1,n(βn)] = 1.
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n αn βn

2 .17157 .06250

3 .22138 .07761

4 .24811 .08539

5 .26496 .09020

6 .27659 .09348

7 .28513 .09586

8 .29166 .09768

9 .29683 .09911

10 .30101 .10027

n αn βn

20 .32055 .10561

40 .33081 .10839

60 .33432 .10933

80 .33609 .10981

100 .33716 .11010

1000 .34105 .11114

104 .34144 .11125

105 .34148 .11126

106 .34149 .11126

Table 1: Selected values of αn and βn.

Kertz [5, Lemma 6.2(b)] proves further that limn→∞ αn = α0, with α0 as defined in the

statement of Theorem 2.2. Table 1 gives some sample values of αn and βn.

Now let an := 1 + αn, and bn := βn. These are the precise definitions of the constants

appearing in Theorems A and B.

Proposition 4.4 of Hill and Kertz [3] gives the ε-extremal distributions for Theorem A.

They satisfy P(Z1 = 0) = (η0,n(αn))1/n = (αn/(n − 1))1/n. Observe that by the construc-

tion of the random variables {Zi} in the proof of Theorem 2.2, Z1 has an atom at zero of

size at least P(N(δ) = 0) = e−δ = e−t/n, but every distribution on [0,∞) satisfying this

condition can be obtained by a suitable choice of the distribution of X. It follows that, as

long as

t ≥ log((n − 1)/αn),

then for every ε > 0 there exists a random variable X and corresponding i.i.d. random

variables Z1, . . . , Zn such that

M(t;X) = E(Z1 ∨ · · · ∨ Zn) > (an − ε)V (Z1, . . . , Zn) ≥ (an − ε)V (t;X).

For example, if t ≥ log(99/α100)
.= 5.683, then supX M(t;X)/V (t;X) ≥ α100

.= 1.337.

Similarly, the extremal distribution for Theorem B (Proposition 5.3 of Hill and Kertz [3])

has P(Z1 = 0) = (η0,n(βn))1/n, so as long as t ≥ log((n−1)/βn), there exists a [0, 1]-valued
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random variable X such that M(t;X) − V (t;X) ≥ bn. For example, if t ≥ log(99/β100)
.=

6.802, then supX∈X[0,1]
(M(t;X) − V (t;X)) ≥ β100

.= 0.110.

Remark 2.6 If X takes values in an interval [a, b] with 0 ≤ a < b, then M(t) − V (t) ≤
b · lim supn→∞ bn. That the bound is not (b − a) lim supn→∞ bn can be explained by the

fact that the random variables Zi in the proof of Theorem 2.2 are not [a, b]-valued but

[0, b]-valued. Furthermore, the sharpness considerations above no longer apply if a is not

very close to zero, since the extremal distributions for Theorem B typically give positive

mass to small values.

3 Short-range prophet inequalities

The inequalities obtained in the previous section can be improved considerably when t

(and with it the expected number of observations) is small. In this section, we consider

pure threshold rules of the form τ(c) = inf{n : Xn ≥ c}. The rationale is that for a small

expected number of observations the best threshold rule should perform almost as well as

the optimal rule. The advantage of using threshold rules is that explicit expressions are

available for the expected return. For c ≥ 0, let Wc(t) denote the expected return from the

rule that accepts the first observation whose value is greater than or equal to c. Thus,

Wc(t) := Wc(t;X) := E
[
Xτ(c) I(τ(c) ≤ N(t))

]
.

The value of Wc(t) is given by

Wc(t) =
[
1 − e−t P(X≥c)

]
E(X|X ≥ c). (8)

This can be seen as follows. Let X ′ be a random variable whose distribution is the same

as the conditional distribution of X given X ≥ c. Note that observations whose value is at

least c arrive according to a Poisson process with rate λ′ := P(X ≥ c). Thus,

Wc(t) = E[X ′
1 I(N ′(t) ≥ 1)] = (1 − e−λ′t) EX ′

=
[
1 − e−t P(X≥c)

]
E(X|X ≥ c),

where N ′(t) is the number of arrivals up to time t in a Poisson process with rate λ′.

The next lemma is the key to the results in this section.
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Lemma 3.1 For γ > 0, the function

f(x) := (1 − e−x)(1 + γ/x), x > 0

does not have a local minimum on (0,∞).

Proof. Since

f ′(x) = e−x(1 + γ/x) − (1 − e−x)γ/x2

and

f ′′(x) = −e−x(1 + γ/x + 2γ/x2) + 2(1 − e−x)γ/x3,

it follows that

f ′(x) + f ′′(x) = (γ/x3){2 − x − (2 + x)e−x}. (9)

Let g(x) = 2 − x − (2 + x)e−x. Then g(0) = g′(0) = 0, and g′′(x) < 0 for all x > 0. Thus,

(9) implies that f ′(x)+f ′′(x) < 0 for all x > 0. But then there cannot exist a point x0 > 0

such that f ′(x0) = 0 and f ′′(x0) ≥ 0. Since f is smooth, the lemma follows. �

Theorem 3.2 For all t > 0,
M(t)
V (t)

< 2 − 1 − e−t

t
. (10)

Proof. The idea is to identify a suitable threshold c such that (10) holds with Wc(t) in

place of V (t). For any c ≥ 0,

E[X∗
t I(X∗

t < c)] = E[X∗
t I(X∗

t < c,N(t) ≥ 1)]

≤ cP(X∗
t < c,N(t) ≥ 1)

= c{P(X∗
t < c) − P (N(t) = 0)}

= cP(X∗
t < c) − ce−t,

and

E[X∗
t I(X∗

t ≥ c)] = cP(X∗
t ≥ c) + E(X∗

t − c)+.

Adding these expressions and applying Lemma 2.1 gives

EX∗
t ≤ c(1 − e−t) + E(X∗

t − c)+

≤ c(1 − e−t) + t E(X − c)+.
(11)
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On the other hand, (8) can be written as

Wc(t) =
[
1 − e−t P(X≥c)

]{
c +

E(X − c)+

P(X ≥ c)

}
. (12)

Now for any α > 0, there exists a unique number c := cα such that

E(X − c)+ = cα. (13)

For this value of c, (11) and (12) combine to give

M(t)
Wc(t)

≤ 1 − e−t + tα

(1 − e−tp)(1 + α/p)
, (14)

where p := P(X ≥ c). Let d(p) denote the denominator in the right hand side of (14).

Using Lemma 3.1 with x = tp and γ = tα we find that d(p) is smallest either when p = 0+

or when p = 1. Thus, noting that limp→0 d(p) = tα,

M(t)
Wc(t)

≤ max
{

1 − e−t + tα

tα
,

1 − e−t + tα

(1 − e−t)(1 + α)

}
. (15)

The first term in the maximum is decreasing in α, and the second is increasing in α. Hence,

the right hand side of (15) is minimized when tα = (1 − e−t)(1 + α); that is, when

α = α∗ :=
1 − e−t

t + e−t − 1
.

(Note that α∗ > 0, since e−t > 1 − t.) For α = α∗, the maximum in (15) reduces to the

right hand side of (10). Finally, the inequality is strict since (13) and α∗ > 0 imply that

P(X ≥ cα∗) > 0, giving strict inequality in the proof of Lemma 2.1 (and hence, in (11)). �

Remark 3.3 The bound of Theorem 3.2 is sharp if the mortal is limited to the use of pure

threshold rules. To see this, let 0 < p < 1, ε = {1 − e−pt − p(1 − e−t)}/(1 − p)(1 − e−t),

and let X have the distribution P(X = 1) = p = 1 − P(X = ε). Then there are only two

essentially different threshold rules: τ(ε) and τ(1). By the choice of ε,

Wε(t) = (1 − e−t){p + ε(1 − p)} = 1 − e−tp = W1(t),

using (8). Furthermore, it is not difficult to compute that

M(t) = 1 − (1 − ε)e−tp − εe−t.
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Thus,

M(t)
supc Wc(t)

=
M(t)
W1(t)

= 1 +
ε(e−tp − e−t)

1 − e−tp

= 1 +
e−tp − e−t

(1 − p)(1 − e−t)

(
1 − p(1 − e−t)

1 − e−tp

)

→ 2 − 1 − e−t

t
as p ↓ 0.

As a consequence, any attempt to improve on Theorem 3.2 will require the use of stopping

rules which are more sophisticated than pure threshold rules.

The next result is a bound on the difference M(t) − V (t). Assume that the random

variables X,X1,X2, . . . are i.i.d. and [a, b]-valued, where 0 ≤ a < b. For any threshold c,

define Dc(t;X) := M(t;X) − Wc(t;X). For t > 0, let ht : [0, 1] → IR be the function

ht(x) = 1 − e−tx − (1 − e−t)x.

Define γ(t) := t/(1− e−t), and β(t) := 1−{1+ log γ(t)}/γ(t). Routine calculus shows that

β(t) = max0≤x≤1 ht(x), and the maximum is attained at x = (log γ(t))/t.

The next theorem presents a universal value c∗ which minimizes the largest possible dif-

ference Dc(t;X) for X ∈ X[a,b]. Thus, the threshold c∗ would be minimax if the distribution

of X were completely unknown.

Theorem 3.4 For all t > 0,

inf
c

sup
X∈X[a,b]

Dc(t;X) = [b − max{a, c∗}]β(t),

where c∗ = bβ(t)/{β(t)+ 1− e−t}. Moreover, the infimum is attained by the choice c = c∗.

The proof of Theorem 3.4 uses the concept of balayage. Given an [a, b]-valued random

variable X and constants a ≤ c < d ≤ b, let Xd
c denote a random variable such that

Xd
c = X if X 	∈ [c, d], Xd

c = c with probability (d − c)−1 E[(d − X) I(c ≤ X ≤ d)], and

Xd
c = d otherwise. It follows immediately that EXd

c = EX, E(Xd
c |Xd

c ≥ c) = E(X|X ≥ c),

and P(Xd
c ≥ c) = P(X ≥ c). Moreover, Lemma 2.2 of Hill and Kertz [2] implies that if Y

is a random variable independent of both X and Xd
c , then E(Xd

c ∨ Y ) ≥ E(X ∨ Y ).
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Proof of Theorem 3.4. Let c = c∗, and assume first that c∗ > a. Let X be any [a, b]-

valued random variable, and define X̂ = Xb
c . By (8), Wc(t; X̂) = Wc(t;X), and by the last

remark in the previous paragraph, M(t; X̂) ≥ M(t;X). Therefore, Dc(t; X̂) ≥ Dc(t;X).

So, by replacing X with X̂ if necessary, we may assume that P(c < X < b) = 0.

Next, define p := P(X = b), and r := P(X ≥ c). For n ≥ 1,

E(X1 ∨ · · · ∨ Xn) ≤ cP(X1 ∨ · · · ∨ Xn ≤ c) + bP(X1 ∨ · · · ∨ Xn = b)

= c(1 − p)n + b{1 − (1 − p)n} = b − (b − c)(1 − p)n.

Thus,

M(t;X) ≤
∞∑

n=1

{b − (b − c)(1 − p)n}P(N(t) = n)

= (b − c)(1 − e−tp) + c(1 − e−t). (16)

On the other hand, by (8),

Wc(t;X) = (1 − e−tr)
(

c +
(b − c)p

r

)
.

Regarding p as fixed and r as variable, this last expression is minimized either when r = p

or r = 1, in view of Lemma 3.1. It follows that

Wc(t;X) ≥ min{(1 − e−t)(c + (b − c)p), b(1 − e−tp)}.

Subtracting from (16) and rearranging terms, we obtain that

Dc(t;X) ≤ max{(b − c)ht(p), c(e−tp − e−t)}

≤ max
{
(b − c)β(t), c(1 − e−t)

}
.

The two terms inside the maximum are equal when c = c∗, and so

Dc∗(t;X) ≤ (b − c∗)β(t).

Suppose next that c∗ ≤ a. Then clearly Dc∗(t;X) = Da(t;X), and the preceding

argument (with r = P(X ≥ a) = 1) yields that

Dc∗(t;X) = Da(t;X) ≤ (b − a)β(t).
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Conversely, for any c ≥ 0 and ε > 0 the distribution of X can be chosen so that

Dc(t;X) ≥ [b − max{a, c∗}]β(t) − ε:

(i) If c ≤ a, take X ∈ {a, b} with P(X = b) = (log γ(t))/t. Then Dc(t;X) = (b−a)β(t).

(ii) If a < c < c∗, take X ∈ {c, b} with P(X = b) = (log γ(t))/t. Then Dc(t;X) =

(b − c)β(t) > (b − c∗)β(t).

(iii) If c ≥ c∗ and c > a, take X ≡ c− ε (where ε is sufficiently small so that c− ε > a).

Then Dc(t;X) = (c − ε)(1 − e−t) ≥ c∗(1 − e−t) − ε = (b − c∗)β(t) − ε.

Thus, the choice c∗ is minimax, and the theorem follows. �

Corollary 3.5 If X is [a, b]-valued with 0 ≤ a < b, then for all t > 0,

M(t;X) − V (t;X) ≤ min
{

(b − a)β(t),
bβ(t)(1 − e−t)
β(t) + 1 − e−t

}
. (17)

Remark 3.6 For a non-homogeneous Poisson process with rate function λ(x), the bounds

corresponding to Theorems 3.2 and 3.4 are obtained by replacing t with µ(t) :=
∫ t
0 λ(x) dx.

4 How sharp are the bounds?

In this section, the ratio and difference of M(t;X) and V (t;X) are examined for random

variables X taking only finitely many values, say a1 < a2 < · · · < an, where a1 ≥ 0. Put

a0 = 0. For i = 0, 1, . . . , n, define ri := P(X ≥ ai), µi := E(X − ai)+, and Ei := E(X|X ≥
ai). Observe that µn = 0, and recursively, for k = n, n − 1, . . . , 1,

µk−1 = E(X − ak)+ + rk(ak − ak−1) = µk + rk(ak − ak−1).

A moment’s reflection reveals that there are critical times 0 < t∗1 < t∗2 < · · · < t∗n−1 < ∞
such that the optimal rule is to accept an observation with value ai with time τ remaining

if and only if τ ≤ t∗i or i = n. Set t∗0 = 0, and t∗n = ∞. For 1 ≤ k ≤ n and t ≥ t∗k−1, let

Vk(t) denote the expected return, with time t remaining, from the rule:

Accept ai with time τ remaining if and only if τ ≤ t∗i or i ≥ k.

Clearly, it is optimal to accept ak with time t remaining if and only if ak ≥ Vk(t). Thus,

t∗k is the unique value of t ≥ t∗k−1 such that Vk(t) = ak. For k = 1, we have

V1(t) = (1 − e−t)E1, t ≥ 0,

14



so that

t∗1 = − log(1 − (a1/E1)) = − log(µ1/µ0) = log(µ0/µ1).

And, inductively for k = 2, . . . , n − 1 and t ≥ t∗k−1,

Vk(t) =
(
1 − e−rk(t−t∗k−1)

)
Ek + e−rk(t−t∗k−1)Vk−1(t∗k−1)

= Ek − (Ek − ak−1)e−rk(t−t∗k−1).

Thus,

e−rk(t∗k−t∗k−1) =
Ek − ak

Ek − ak−1
=

rk(Ek − ak)
rk(Ek − ak−1)

=
µk

µk−1
,

and so

t∗k = t∗k−1 + (1/rk) log(µk−1/µk), k = 2, . . . , n − 1.

Finally, when t∗k−1 ≤ t ≤ t∗k (k = 1, 2, . . . , n),

V (t) = Vk(t) = Ek − (Ek − ak−1)e−rk(t−t∗k−1). (18)

On the other hand, the prophet’s value is easily computed to be

M(t) =
n∑

i=1

(ai − ai−1)
(
1 − e−rit

)
, for all t ≥ 0. (19)

Example 4.1 Let n = 2, and put a1 = 1 and a2 = K, where K is large. Let a be a

positive real number such that

log(1 + t/a) < t, (20)

and let r2 = a/(tK). We will examine the ratio R(t) = M(t)/V (t) as K → ∞. First, by

(19),

M(t) = 1 − e−t + (K − 1)
(
1 − e−a/K

)
→ 1 − e−t + a, as K → ∞. (21)

Next, µ1 = (a/tK)(K − 1) → a/t, and µ0 = µ1 + 1 → (a/t) + 1, so that

t∗1 = log(µ0/µ1) → log(1 + t/a), K → ∞.

It follows that t∗1 < t for sufficiently large K, so by (18),

V (t) = E2 − (E2 − a1)e−r2(t−t∗1)

= (K − 1)
(
1 − e−a(t−t∗1)/tK

)
+ 1

→ a − (a/t) log(1 + t/a) + 1, K → ∞.

(22)
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Together, (21) and (22) yield that

R(t) → a + 1 − e−t

a + 1 − (a/t) log(1 + t/a)
, as K → ∞. (23)

In particular, if a = 1, then (20) is met for every t > 0, and (23) becomes

R(t) → 2 − e−t

2 − log(1 + t)/t
. (24)

Numerical experimentation suggests that, for the range 0 < t < 2, this ratio is close to the

maximum ratio over all two-valued random variables.

Example 4.2 Let n = 3, and put ai = Ki−1 for i = 1, 2, 3, where K is again assumed to

be large. Let a and b be positive real numbers such that a < t and

log(1 + a/b) < a, (25)

and let r2 = a/t, and r3 = b/(tK). Then

M(t) = 1 − e−t + (K − 1)
(
1 − e−a

)
+ K(K − 1)

(
1 − e−b/K

)
∼ K

(
1 − e−a + b

)
as K → ∞.

Next, µ2 = (b/tK)K(K − 1) = b(K − 1)/t, µ1 = µ2 + (a/t)(K − 1) = (a+ b)(K − 1)/t, and

µ0 = µ1 + 1. Hence, t∗1 = log(µ0/µ1) = log(1 + 1/µ1) → 0, and so

t∗2 = t∗1 + (t/a) log(1 + a/b) → (t/a) log(1 + a/b).

It follows that t∗2 < t when K is sufficiently large, and then

V (t) = K(K − 1)
(
1 − e−b(t−t∗2)/tK

)
+ K

∼ K [b − (b/a) log(1 + a/b) + 1] .

Thus,

R(t) → 1 + b − e−a

1 + b − (b/a) log(1 + a/b)
as K → ∞.

In particular, if a = 2 and b = 1, then (25) is satisfied, and

R(t) → 2 − e−2

2 − (log 3)/2
.= 1.28536, for t > 2.

Note that this is the same value obtained in (24) for t = 2. However, by admitting three-

point distributions this ratio can be achieved for any t ≥ 2.
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Figure 1: The theoretical best-possible ratio bound is between the two curves g(t) and min{f(t), 1.34149},
with f(t) = 2 − (1 − e−t)/t, and g(t) = (2 − e−t)/{2 − log(1 + t)/t}.

Observe from Table 1 that the smallest n for which an > 1.28536 is n = 8. A ratio

arbitrarily close to a8 = 1.29166 can be obtained when t ≥ log(7/α8)
.= 3.1781. For smaller

values of t, however, Examples 4.1 and 4.2 provide larger ratios than the method discussed

at the end of Section 2.

Example 4.2 shows that the bound of Theorem 3.2 is asymptotically sharp as t ↓ 0 in

the following sense. Let f(t) = 2 − (1 − e−t)/t, and g(t) = (2 − e−t)/{2 − log(1 + t)/t}.
That is, g(t) is the right hand side of (24). By Example 4.2, the theoretical best-possible

ratio bound is between g(t) and f(t). Straightforward calculations show that

f(t) − g(t) = O(t2) as t ↓ 0.

This relationship is illustrated in Figure 1, which also shows the uniform ratio bound from

Theorem 2.2.

A similar comparison can be made for the difference bound of Corollary 3.5. Let f̂(t) =

β(t)(1 − e−t)/(β(t) + 1− e−t). That is, f̂(t) is the right hand side of (17) for a = 0, b = 1.

Let X have the distribution given by P(X = 1) = 1/(et + 1) = 1 − P(X = (1 − e−t)/2).

Then t∗1 = t exactly, and equations (18) and (19) yield

M(t) − V (t) =
1
2

[
(1 + e−t)(1 − exp{−t/(et + 1)}) − e−t(1 − e−t)

]
. (26)
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Let ĝ(t) denote the right hand side of (26). A straightforward calculation shows that

f̂(t) − ĝ(t) = O(t3) as t ↓ 0.

Thus, the bound of Corollary 3.5 is asymptotically quite sharp as t ↓ 0.

5 Other renewal processes: examples in discrete time

The main purpose of this section is to show that the conclusions of Theorems 2.2 and

2.3 may fail if the Poisson process governing the arrivals of observations is replaced by

an arbitrary renewal process. The general setup is as follows. Let T1, T2, . . . be i.i.d.

random variables taking values in the positive integers, and assume that X,X1,X2, . . .

are i.i.d. nonnegative random variables, independent of the Ti. Call the random times

Sk = T1 + · · · + Tk (k ∈ IN) the renewal times, and assume that for each k, the random

variable Xk is observed at time Sk. Put S0 = 0. For n ∈ IN, let Nn = max{k : Sk ≤ n}. In

other words, Nn is the number of observations that arrive by time n. As before, we wish

to compare the values Mn := E(max{X1, . . . ,XNn}) and Vn := supτ∈T E[Xτ I(Sτ ≤ n)],

where T is the set of all IN-valued random variables (stopping rules) τ such that {τ = i}
is measurable with respect to the σ-algebra generated by X1, . . . ,Xi and S1, . . . , Si.

The problem will be easier to analyze if we represent it as follows. For each j ∈ IN,

define

Yj =




Xk, if j = Sk (k = 1, 2, . . . ),

0, otherwise.

It is not difficult to see that Mn = E(Y1∨· · ·∨Yn), and Vn = sup{EYτ : τ is a stopping rule

for Y1, . . . , Yn}. Thus, the problem is reduced to that of stopping an ordinary sequence of

random variables, and standard methods can be applied to solve it.

Observe that the Yj are, in general, neither independent nor identically distributed.

However, there is one important exception.

Example 5.1 Let 0 < p < 1, and assume that P(T1 = k) = (1 − p)k−1p for k = 1, 2, . . . .

This yields the binomial process, which has the property that the events {j is a renewal

time}, j ∈ IN, are mutually independent and have probability p. Since the Xi are i.i.d.,
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this implies that the Yj are i.i.d. with common distribution pF + (1 − p)δ{0}, where F is

the distribution of X, and δ{0} denotes Dirac measure at zero. It follows from Theorem

A and the above representations that Mn ≤ anVn. Similarly, if X is [0, 1]-valued then so

is Y1, and Theorem B implies that Mn − Vn ≤ bn. The sharpness of these inequalities

depends on the value of p: the first bound is sharp if 1 − p ≤ (η0,n(αn))1/n, that is, if

p ≥ (αn/(n − 1))1/n. Likewise, the second bound is attained if p ≥ (βn/(n − 1))1/n. It is

not clear how sharp the bounds are when p is smaller than the indicated values.

The next example shows that the best possible ratio and difference bounds are, in

general, strictly greater than an and bn.

Example 5.2 Fix n ∈ IN. Let 0 < p < 1, and assume that P(T1 = 1) = p = 1−P(T1 = n).

We compute Vn by backward induction. For i = 1, 2, . . . , n, let γi denote the supremum,

over all stopping times τ such that i ≤ τ ≤ n, of E[Yτ | i is a renewal time]. Then γn = EX,

and γi = E(X ∨ pγi+1) for i = 1, 2, . . . , n− 1, since if i is a renewal moment, then the next

renewal moment is either i + 1 or i + n, and i + n is beyond the time horizon. Finally,

Vn = pγ1 + (1 − p)γn. (27)

Now let X have a distribution on two points ε and 1, where 0 < ε < 1, and the probability

π := P(X = 1) is chosen so that

p EX = ε. (28)

It follows immediately that γi = EX for i = 1, . . . , n, and hence, by (27), Vn = EX. On

the other hand,

Mn = EX1 +
n∑

k=2

E(X2 ∨ · · · ∨ Xk − X1)+ P(Nn = k)

= EX +
n−1∑
k=2

pk(1 − p)(1 − ε)(1 − π){1 − (1 − π)k−1}

+ pn(1 − ε)(1 − π){1 − (1 − π)n}

= EX + (1 − ε)pπ

[
1 − {p(1 − π)}n

1 − p(1 − π)
− 1

]
,
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where the last equality follows after routine simplification. Since EX = π + (1 − π)ε, (28)

implies that ε = pπ/{1 − p(1 − π)}, and 1 − ε = (1 − p)/{1 − p(1 − π)}. Thus, we obtain

the expressions

Dn := Mn − Vn =
p(1 − p)π

1 − p(1 − π)

[
1 − {p(1 − π)}n

1 − p(1 − π)
− 1

]

and

Rn :=
Mn

Vn
= 1 + p(1 − p)

[
1 − {p(1 − π)}n

1 − p(1 − π)
− 1

]
.

Now as π ↓ 0, Rn increases to 1+ p2− pn+1, which is maximized for p = (2/(n+1))1/(n−1).

It follows that Rn can be arbitrarily close to

cn := 1 +
(

2
n + 1

)2/(n−1) (
n − 1
n + 1

)
.

Observe that limn→∞ cn = 2. Thus, the conclusion of Theorem 2.2 fails to hold for this

case when n is sufficiently large. (In fact, c5
.= 1.3849 > 1 + α0.)

As for the difference Dn, note that

lim
n→∞

Dn =
p2(1 − p)π(1 − π)
{1 − p(1 − π)}2

. (29)

For fixed p, this is maximized at π = (1− p)/(2− p), and substituting this into (29) yields

that limn→∞ Dn = p2/4. Thus, if we choose n sufficiently large, p sufficiently close to 1,

and π = (1 − p)/(2 − p), then Dn will be arbitrarily close to 1/4.

Note that it is not known whether lim supn→∞ bn < 1/4, though Table 1 suggests this

should be the case. If this is true, then the conclusion of Theorem 2.3 too fails to hold for

this example.

The last example raises an interesting question: do there exist a renewal process (in

discrete or continuous time) and a distribution for X such that M(t;X)/V (t;X) > 2, or

(if X is [0, 1]-valued) M(t;X) − V (t;X) > 1/4? If not, why do these classical constants

for the independent case appear as upper bounds in a problem concerning i.i.d. random

variables? These questions will be addressed in a future paper.
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